Publications by authors named "Satish K Dhingra"

Article Synopsis
  • The study focuses on identifying genetic mutations in malaria parasites that confer drug resistance, essential for improving surveillance and target discovery in malaria treatment.
  • Researchers analyzed the genomes of 724 clones resistant to 118 different antimalarial compounds, uncovering 1,448 variants in 128 frequently mutated genes related to multidrug resistance.
  • The findings suggest that in vitro selected mutations are more diverse and significant than naturally occurring ones, providing insights into how these mutations can inform predictions of drug resistance in similar pathogens.
View Article and Find Full Text PDF

Our study leverages gene editing techniques in asexual blood stage parasites to profile novel mutations in mutant PfCRT, an important mediator of piperaquine resistance, which developed in Southeast Asian field isolates or in parasites cultured for long periods of time. We provide evidence that increased parasite fitness of these lines is the primary driver for the emergence of these PfCRT variants. These mutations differentially impact parasite susceptibility to piperaquine and chloroquine, highlighting the multifaceted effects of single point mutations in this transporter.

View Article and Find Full Text PDF
Article Synopsis
  • Drug-resistant parasites are spreading from Southeast Asia to Africa, posing a significant threat to malaria treatment effectiveness.
  • Researchers used genetically modified mice to identify key genetic factors that contribute to resistance against two antimalarial drugs, artemisinin (ART) and piperaquine (PPQ), particularly in the dominant KEL1/PLA1 parasite lineage.
  • The study findings suggest that the mutant PfCRT gene plays a central role in ART resistance and that PPQ drives the selection of resistant parasites; however, the same mutant may increase susceptibility to a different drug, lumefantrine, offering a potential strategy for combating resistance.
View Article and Find Full Text PDF
Article Synopsis
  • Cabamiquine is a new antimalarial drug that targets Plasmodium falciparum translation elongation factor 2 and was tested for its ability to prevent malaria in healthy, malaria-naive volunteers through a phase 1b clinical trial in the Netherlands.
  • The study involved 39 participants divided into cohorts, receiving different doses of cabamiquine or a placebo after being inoculated with malaria sporozoites, with various outcomes measured including the development of parasitaemia and safety profiles.
  • Results from the trial are still being evaluated to determine the effectiveness and safety of cabamiquine as a potential chemoprophylactic treatment for malaria.
View Article and Find Full Text PDF

Drug-resistant parasites have swept across Southeast Asia and now threaten Africa. By implementing a genetic cross using humanized mice, we report the identification of key determinants of resistance to artemisinin (ART) and piperaquine (PPQ) in the dominant Asian KEL1/PLA1 lineage. We mapped as the central mediator of ART resistance and identified secondary markers.

View Article and Find Full Text PDF

The lack of a long-term in vitro culture method has severely restricted the study of Plasmodium vivax, in part because it limits genetic manipulation and reverse genetics. We used the recently optimized Plasmodium cynomolgi Berok in vitro culture model to investigate the putative P. vivax drug resistance marker MDR1 Y976F.

View Article and Find Full Text PDF

Multidrug-resistant Plasmodium falciparum parasites have emerged in Cambodia and neighboring countries in Southeast Asia, compromising the efficacy of first-line antimalarial combinations. Dihydroartemisinin + piperaquine (PPQ) treatment failure rates have risen to as high as 50% in some areas in this region. For PPQ, resistance is driven primarily by a series of mutant alleles of the P.

View Article and Find Full Text PDF

Background: M5717 is the first plasmodium translation elongation factor 2 inhibitor to reach clinical development as an antimalarial. We aimed to characterise the safety, pharmacokinetics, and antimalarial activity of M5717 in healthy volunteers.

Methods: This first-in-human study was a two-part, single-centre clinical trial done in Brisbane, QLD, Australia.

View Article and Find Full Text PDF

The emergence of mutant K13-mediated artemisinin (ART) resistance in malaria parasites has led to widespread treatment failures across Southeast Asia. In Africa, propeller genotyping confirms the emergence of the R561H mutation in Rwanda and highlights the continuing dominance of wild-type K13 elsewhere. Using gene editing, we show that R561H, along with C580Y and M579I, confer elevated in vitro ART resistance in some African strains, contrasting with minimal changes in ART susceptibility in others.

View Article and Find Full Text PDF

Antimalarial drug resistance in the parasite poses a constant challenge for drug development. To mitigate this risk, new antimalarial medicines should be developed as fixed-dose combinations. Assessing the pharmacodynamic interactions of potential antimalarial drug combination partners during early phases of development is essential in developing the targeted parasitological and clinical profile of the final drug product.

View Article and Find Full Text PDF

The emergence and spread of drug-resistant Plasmodium falciparum impedes global efforts to control and eliminate malaria. For decades, treatment of malaria has relied on chloroquine (CQ), a safe and affordable 4-aminoquinoline that was highly effective against intra-erythrocytic asexual blood-stage parasites, until resistance arose in Southeast Asia and South America and spread worldwide. Clinical resistance to the chemically related current first-line combination drug piperaquine (PPQ) has now emerged regionally, reducing its efficacy.

View Article and Find Full Text PDF

The global spread of chloroquine resistance transporter (PfCRT) variant haplotypes earlier caused the widespread loss of chloroquine (CQ) efficacy. In Asia, novel PfCRT mutations that emerged on the Dd2 allelic background have recently been implicated in high-level resistance to piperaquine, and N326S and I356T have been associated with genetic backgrounds in which resistance emerged to artemisinin derivatives. By analyzing large-scale genome sequencing data, we report that the predominant Asian CQ-resistant Dd2 haplotype is undetectable in Africa.

View Article and Find Full Text PDF

Malaria is one of the most challenging human infectious diseases, and both prevention and control have been hindered by the development of Plasmodium falciparum resistance to existing therapies. Several new compounds with novel mechanisms are in clinical development for the treatment of malaria, including DSM265, an inhibitor of Plasmodium dihydroorotate dehydrogenase. To explore the mechanisms by which resistance might develop to DSM265 in the field, we selected for DSM265-resistant P.

View Article and Find Full Text PDF

Plasmodium falciparum multidrug resistance constitutes a major obstacle to the global malaria elimination campaign. Specific mutations in the Plasmodium falciparum chloroquine resistance transporter (PfCRT) mediate resistance to the 4-aminoquinoline drug chloroquine and impact parasite susceptibility to several partner agents used in current artemisinin-based combination therapies, including amodiaquine. By examining gene-edited parasites, we report that the ability of the wide-spread Dd2 PfCRT isoform to mediate chloroquine and amodiaquine resistance is substantially reduced by the addition of the PfCRT L272F mutation, which arose under blasticidin selection.

View Article and Find Full Text PDF

The widely used antimalarial combination therapy dihydroartemisinin + piperaquine (DHA + PPQ) has failed in Cambodia. Here, we perform a genomic analysis that reveals a rapid increase in the prevalence of novel mutations in the Plasmodium falciparum chloroquine resistance transporter PfCRT following DHA + PPQ implementation. These mutations occur in parasites harboring the K13 C580Y artemisinin resistance marker.

View Article and Find Full Text PDF

Current efforts to reduce the global burden of malaria are threatened by the rapid spread throughout Asia of resistance to artemisinin-based combination therapies, which includes increasing rates of clinical failure with dihydroartemisinin plus piperaquine (PPQ) in Cambodia. Using zinc finger nuclease-based gene editing, we report that addition of the C101F mutation to the chloroquine (CQ) resistance-conferring PfCRT Dd2 isoform common to Asia can confer PPQ resistance to cultured parasites. Resistance was demonstrated as significantly higher PPQ concentrations causing 90% inhibition of parasite growth (IC) or 50% parasite killing (50% lethal dose [LD]).

View Article and Find Full Text PDF

Southeast Asia is an epicenter of multidrug-resistant Plasmodium falciparum strains. Selective pressures on the subcontinent have recurrently produced several allelic variants of parasite drug resistance genes, including the P. falciparum chloroquine resistance transporter (pfcrt).

View Article and Find Full Text PDF

Antimalarial chemotherapy, globally reliant on artemisinin-based combination therapies (ACTs), is threatened by the spread of drug resistance in Plasmodium falciparum parasites. Here we use zinc-finger nucleases to genetically modify the multidrug resistance-1 transporter PfMDR1 at amino acids 86 and 184, and demonstrate that the widely prevalent N86Y mutation augments resistance to the ACT partner drug amodiaquine and the former first-line agent chloroquine. In contrast, N86Y increases parasite susceptibility to the partner drugs lumefantrine and mefloquine, and the active artemisinin metabolite dihydroartemisinin.

View Article and Find Full Text PDF

In regions with high malaria endemicity, the withdrawal of chloroquine (CQ) as first-line treatment of Plasmodium falciparum infections has typically led to the restoration of CQ susceptibility through the reexpansion of the wild-type (WT) allele K76 of the chloroquine resistance transporter gene (pfcrt) at the expense of less fit mutant alleles carrying the CQ resistance (CQR) marker K76T. In low-transmission settings, such as South America, drug resistance mutations can attain 100% prevalence, thereby precluding the return of WT parasites after the complete removal of drug pressure. In French Guiana, despite the fixation of the K76T allele, the prevalence of CQR isolates progressively dropped from >90% to <30% during 17 y after CQ withdrawal in 1995.

View Article and Find Full Text PDF

The widespread use of chloroquine to treat Plasmodium falciparum infections has resulted in the selection and dissemination of variant haplotypes of the primary resistance determinant PfCRT. These haplotypes have encountered drug pressure and within-host competition with wild-type drug-sensitive parasites. To examine these selective forces in vitro, we genetically engineered P.

View Article and Find Full Text PDF