Publications by authors named "Satish Chandra Garkoti"

The present study investigates the seasonal variations in leaf ecophysiological traits and strategies employed by co-occurring evergreen and deciduous tree species within a white oak forest (Quercus leucotrichophora A. Camus) ecosystem in the central Himalaya. Seasonal variations in physiological, morphological, and chemical traits were observed from leaf initiation until senescence in co-occurring deciduous and evergreen tree species.

View Article and Find Full Text PDF

Due to substantial topographic variations in the Himalaya, incident solar radiation in the forest canopy is highly unequal. This results in significant environmental differences at finer scales and may lead to considerable differences in photosynthetic productivity in montane forests. Therefore, local-scale ecophysiological investigations, may be more effective and instructive than landscape-level inventories and models.

View Article and Find Full Text PDF

Leaf ecophysiological traits are known to change with leaf and tree age. In the present study, we measured the effect of leaf and tree age on leaf ecophysiological and morphological traits of nitrogen-fixing (D. Don) which is a pioneer tree species in degraded lands.

View Article and Find Full Text PDF

Plant invasion is a leading threat to biodiversity, ecosystem services and human wellbeing worldwide. In the central Himalayas intentionally or accidentally introduced invasive alien plant species (IAPS) facilitate their own establishment and spread, which is altering forest structure, vegetation composition, species diversity and livelihood. To understand the perception and awareness amongst local communities about invasive alien and native plants and its effect on local livelihood, a questionnaire-based study was conducted in 10 villages of Nainital district, Uttarakhand, India.

View Article and Find Full Text PDF

Forests significantly influence the dynamics of microbial biomass and soil nutrients in neighboring agricultural lands. Little information is available on how forest types affect the physicochemical and microbial dynamics of soil in surrounding agroecosystems. The present study evaluated the influence of forest types on soil physicochemical and biological characteristics of forest and associated agricultural systems in the Himalaya.

View Article and Find Full Text PDF

Nitrogen-fixing Nepalese alder ( D. Don.), a pioneer species and nurse tree species, forms pure stands, and sometimes occurs in mixed stands in areas affected by landslides.

View Article and Find Full Text PDF

Disturbance is a key factor in controlling vegetation diversity, nutrient influx rate, and biochemical cycling in terrestrial forest ecosystems. Limited studies are available on changes in tree diversity, soil nutrients and enzyme activities in response to different intensities of land disturbances in the Himalayan forests. Present study investigated the impact of varying intensities of disturbances on tree diversity and their relationship with soil physical and bio-chemical properties in sal forests, Western Himalayas.

View Article and Find Full Text PDF

Traits are the primary attributes that distinguish a species niche. Species and higher taxa are part of a structured phylogeny, and variation in plant traits depends on lineage as well as on environmental conditions. Therefore, it is crucial to investigate linkages between taxonomic identity, shared ancestry, and environment for understanding the variation in leaf traits.

View Article and Find Full Text PDF

This study investigated the potential role of a nitrogen-fixing early-coloniser Alnus Nepalensis D. Don (alder) in driving the changes in soil bacterial communities during secondary succession. We found that bacterial diversity was positively associated with alder growth during course of ecosystem development.

View Article and Find Full Text PDF
Article Synopsis
  • Understanding the biogeographic affinities of tropical forests helps explain regional differences in their structure, diversity, and responses to global changes.
  • The study classifies the world's tropical forests into five main floristic regions based on their phylogenetic relationships: Indo-Pacific, Subtropical, African, American, and Dry forests.
  • Findings challenge the traditional division of tropical forests and suggest a connection between northern-hemisphere Subtropical forests in Asia and America, as well as the existence of a global dry forest region.
View Article and Find Full Text PDF