Publications by authors named "Satish Arcot Jayaram"

The human genome encodes approximately 20,000 proteins, many still uncharacterised. It has become clear that scientific research tends to focus on well-studied proteins, leading to a concern that poorly understood genes are unjustifiably neglected. To address this, we have developed a publicly available and customisable "Unknome database" that ranks proteins based on how little is known about them.

View Article and Find Full Text PDF
Article Synopsis
  • The study maps the embryonic origins of the mammalian heart, using single-cell analysis to better understand how different cardiac cell types develop.
  • It identifies a new pool of cardiac progenitor cells that are distinct from known types, which contribute not only to heart muscle cells but also to the epicardium, important for heart development and repair.
  • The findings have implications for developing cell-based therapies aimed at regenerating heart tissue.
View Article and Find Full Text PDF

The intestinal physiology of Drosophila melanogaster can be monitored in an integrative, non-invasive manner by analysing graphical features of the excreta produced by flies fed on a dye-supplemented diet. This assay has been used by various labs to explore gut function and its regulation. To facilitate its use, we present here a free, stand-alone dedicated software tool for the analysis of fly excreta.

View Article and Find Full Text PDF

Background: Tube expansion defects like stenoses and atresias cause devastating human diseases. Luminal expansion during organogenesis begins to be elucidated in several systems but we still lack a mechanistic view of the process in many organs. The Drosophila tracheal respiratory system provides an amenable model to study tube size regulation.

View Article and Find Full Text PDF

The development of air-filled respiratory organs is crucial for survival at birth. We used a combination of live imaging and genetic analysis to dissect respiratory organ maturation in the embryonic Drosophila trachea. We found that tracheal tube maturation entails three precise epithelial transitions.

View Article and Find Full Text PDF

The function of tubular epithelial organs like the kidney and lung is critically dependent on the length and diameter of their constituting branches. Genetic analysis of tube size control during Drosophila tracheal development has revealed that epithelial septate junction (SJ) components and the dynamic chitinous luminal matrix coordinate tube growth. However, the underlying molecular mechanisms controlling tube expansion so far remained elusive.

View Article and Find Full Text PDF