Embryonic morphogenesis involves the coordinate behaviour of multiple cells and requires the accurate balance of forces acting within different cells through the application of appropriate brakes and throttles. In C. elegans, embryonic elongation is driven by Rho-binding kinase (ROCK) and actomyosin contraction in the epidermis.
View Article and Find Full Text PDFMorphogenesis of the Caenorhabditis elegans embryo is driven by actin microfilaments in the epidermis and by sarcomeres in body wall muscles. Both tissues are mechanically coupled, most likely through specialized attachment structures called fibrous organelles (FOs) that connect muscles to the cuticle across the epidermis. Here, we report the identification of new mutations in a gene known as vab-10, which lead to severe morphogenesis defects, and show that vab-10 corresponds to the C.
View Article and Find Full Text PDFWe explored the feasibility of a strategy based on transposons to generate identified mutants of most Caenorhabditis elegans genes. A total of 1088 random new insertions of C. elegans transposons Tc1, Tc3, and Tc5 were identified by anchored PCR, some of which result in a mutant phenotype.
View Article and Find Full Text PDFBackground: Integrins are heterodimeric (alphabeta) transmembrane receptors for extracellular matrix (ECM) ligands. Through interactions with molecular partners at cell junctions, they provide a connection between the ECM and the cytoskeleton and regulate many aspects of cell behavior. A number of integrin-associated molecules have been identified; however, in many cases, their function and role in the animal remain to be clarified.
View Article and Find Full Text PDF