Publications by authors named "Satinderpall Pannu"

From animal experiments by Cohen and Suzuki et al. in the 1960s to the first-in-human clinical trials now in progress, prosthetic electrical stimulation targeting semicircular canal branches of the vestibular nerve has proven effective at driving directionally appropriate vestibulo-ocular reflex eye movements, postural responses, and perception. That work was considerably facilitated by the fact that all hair cells and primary afferent neurons in each canal have the same directional sensitivity to head rotation, the three canals' ampullary nerves are geometrically distinct from one another, and electrically evoked three-dimensional (3D) canal-ocular reflex responses approximate a simple vector sum of linearly independent components representing relative excitation of each of the three canals.

View Article and Find Full Text PDF

High-density electrocorticography (ECoG) arrays are promising interfaces for high-resolution neural recording from the cortical surface. Commercial options for high-density arrays are limited, and historically tradeoffs must be made between spatial coverage and electrode density. However, thin-film technology is a promising alternative for generating electrode arrays capable of large area coverage and high channel count, with resolution on the order of cortical columns in the functional surface unit of a human gyrus.

View Article and Find Full Text PDF

Background: Current source density analysis of recordings from penetrating electrode arrays has traditionally been used to examine the layer- specific cortical activation and plastic changes associated with changed afferent input. We report on a related analysis, the second spatial derivative (SSD) of surface local field potentials (LFPs) recorded using custom designed thin-film polyimide substrate arrays.

Results: SSD analysis of tone- evoked LFPs generated from the auditory cortex under the recording array demonstrated a stereotypical single local minimum, often flanked by maxima on both the caudal and rostral sides.

View Article and Find Full Text PDF

The brain is a massively interconnected network of specialized circuits. Even primary sensory areas, once thought to support relatively simple, feed-forward processing, are now known to be parts of complex feedback circuits. All brain functions depend on millisecond timescale interactions across these brain networks.

View Article and Find Full Text PDF

The translation of advances in neural stimulation and recording research into clinical practice hinges on the ability to perform chronic experiments in awake and behaving animal models. Advances in microelectrode array technology, most notably flexible polymer arrays, have significantly improved reliability of the neural interface. However, electrical connector technology has lagged and is prone to failure from non-biocompatibility, large size, contamination, corrosion, and difficulty of use.

View Article and Find Full Text PDF

We report a novel method to fabricate chronic neural interfaces with the intent to combine the reliability and lifetime of bulk metal electrodes, with the miniaturization and mechanical flexibility of thin-film polymer microelectrode arrays. 10 μm thick platinum discs were laser cut from a foil into the shape of individual electrodes, and coated with gold on the backside. The discs were bonded to a microelectrode array with gold bond pads via gold-gold inter-diffusion using a flipchip bonder.

View Article and Find Full Text PDF

Microelectrode arrays for neural interface devices that are made of biocompatible thin-film polymer are expected to have extended functional lifetime because the flexible material may minimize adverse tissue response caused by micromotion. However, their flexibility prevents them from being accurately inserted into neural tissue. This article demonstrates a method to temporarily attach a flexible microelectrode probe to a rigid stiffener using biodissolvable polyethylene glycol (PEG) to facilitate precise, surgical insertion of the probe.

View Article and Find Full Text PDF

We present here a microfabricated, multi-functional neural interface with the ability to selectively apply electrical and chemical stimuli, while simultaneously monitoring both electrical and chemical activity in the brain. Such a comprehensive approach is required to understand and treat neuropsychiatric disorders, such as major depressive disorder (MDD), and to understand the mechanisms underlying treatments, such as pharmaceutical therapies and deep brain stimulation (DBS). The polymer-based, multi-functional neural interface is capable of electrical stimulation and recording, targeted drug delivery, and electrochemical sensing.

View Article and Find Full Text PDF

We report a novel nano-cluster platinum (NCPt) film that exhibits enhanced performance as an electrode material for neural stimulation applications. Nano-cluster films were deposited using a custom physical vapor deposition process and patterned on a flexible polyimide microelectrode array using semiconductor processing technology. Electrode performance was characterized in vitro using electrochemical impedance spectroscopy and compared with sputtered thinfilm platinum (TFPt) electrodes.

View Article and Find Full Text PDF

Objectives: Persons without a functional auditory nerve cannot benefit from cochlear implants, but some hearing can be restored by an auditory brainstem implant (ABI) with stimulating electrodes implanted on the surface of the cochlear nucleus (CN). Most users benefit from their ABI, but speech recognition tends to be poorer than for users of cochlear implants. Psychophysical studies suggest that poor modulation detection may contribute to the limited performance of ABI users.

View Article and Find Full Text PDF

We present here a demonstration of a dual-sided, 4-layer metal, polyimide-based electrode array suitable for neural stimulation and recording. The fabrication process outlined here utilizes simple polymer and metal deposition and etching steps, with no potentially harmful backside etches or long exposures to extremely toxic chemicals. These polyimide-based electrode arrays have been tested to ensure they are fully biocompatible and suitable for long-term implantation; their flexibility minimizes the injury and glial scarring that can occur at the implantation site.

View Article and Find Full Text PDF

We present here a microfabrication process for multi-layer metal, multi-site, polymer-based neural probes. The process has been used to generate 1-, 2-, and 4-layer trace metal neural probes with highly uniform and reproducible electrode characteristics. Typically, increasing the number of metal layers is assumed to both reduce the width of the neural probes and minimize the injury and glial scarring caused at the implantation site.

View Article and Find Full Text PDF

Flexible polymer probes are expected to enable extended interaction with neural tissue by minimizing damage from micromotion and reducing inflammatory tissue response. However, their flexibility prevents them from being easily inserted into the tissue. This paper describes an approach for temporarily attaching a silicon stiffener with biodissolvable polyethylene glycol (PEG) so that the stiffener can be released from the probe and extracted shortly after probe placement.

View Article and Find Full Text PDF

Metallic nanoparticles suspended in aqueous solutions and functionalized with chemical and biological surface coatings are important elements in basic and applied nanoscience research. Many applications require an understanding of the electrokinetic or colloidal properties of such particles. We describe the results of experiments to measure the zeta potential of metallic nanorod particles in aqueous saline solutions, including the effects of pH, ionic strength, metallic composition, and surface functionalization state.

View Article and Find Full Text PDF