Fragile X syndrome is a neurodevelopmental disorder caused by the absence of the mRNA-binding protein fragile X messenger ribonucleoprotein (FMRP). Because FMRP is a highly pleiotropic protein controlling the expression of hundreds of genes, viral vector-mediated gene replacement therapy is viewed as a potential viable treatment to correct the fundamental underlying molecular pathology inherent in the disorder. Here, we studied the safety profile and therapeutic effects of a clinically relevant dose of a self-complementary adeno-associated viral (AAV) vector containing a major human brain isoform of FMRP after intrathecal injection into wild-type and fragile X-KO mice.
View Article and Find Full Text PDFSerotonin is a neurotransmitter that plays a crucial role in the regulation of several behavioral and cognitive functions by binding to a number of different serotonin receptors present on the cell surface. We report here the synthesis and characterization of several novel fluorescent analogs of serotonin in which the fluorescent NBD (7-nitrobenz-2-oxa-1,3-diazol-4-yl) group is covalently attached to serotonin. The fluorescent ligands compete with the serotonin receptor specific radiolabeled agonist for binding to the receptor.
View Article and Find Full Text PDFPhosphoinositide-specific phospholipase C (PLC) is a central effector for many biological responses regulated by G-protein-coupled receptors including Drosophila phototransduction where light sensitive channels are activated downstream of NORPA, a PLCbeta homolog. Here we show that the sphingolipid biosynthetic enzyme, ceramide kinase, is a novel regulator of PLC signaling and photoreceptor homeostasis. A mutation in ceramide kinase specifically leads to proteolysis of NORPA, consequent loss of PLC activity, and failure in light signal transduction.
View Article and Find Full Text PDFThe linear peptide gramicidin forms prototypical ion channels specific for monovalent cations and has been used extensively to study the organization, dynamics, and function of membrane-spanning channels. The tryptophan residues in gramicidin channels are crucial for maintaining the structure and function of the channel. We explored the structural basis for the reduction in channel conductance in the case of single-tryptophan analogs of gramicidin with three Trp --> hydrophobic substitutions using a combination of fluorescence approaches, which include red edge excitation shift and membrane penetration depth analysis, size-exclusion chromatography, and circular dichroism spectroscopy.
View Article and Find Full Text PDFNeutral ceramidase, a key enzyme of sphingolipid metabolism, hydrolyzes ceramide to sphingosine. These sphingolipids are critical structural components of cell membranes and act as second messengers in diverse signal transduction cascades. Here, we have isolated and characterized functional null mutants of Drosophila ceramidase.
View Article and Find Full Text PDFWe investigated the effect of receptor mobility on HIV-1 envelope glycoprotein (Env)-triggered fusion using B16 mouse melanoma cells that are engineered to express CD4 and CXCR4 or CCR5. These engineered cells are resistant to fusion mediated CD4-dependent HIV-1 envelope glycoprotein. Receptor mobility was measured by fluorescence recovery after photobleaching (FRAP) using either fluorescently-labeled antibodies or transient expression of GFP-tagged receptors in the cells.
View Article and Find Full Text PDFHere, we reveal a novel feature of the dynamic organization of signaling components in Drosophila photoreceptors. We show that the multi-PDZ protein INAD and its target proteins undergo light-induced recruitment to detergent-resistant membrane (DRM) rafts. Reduction of ergosterol, considered to be a key component of lipid rafts in Drosophila, resulted in a loss of INAD-signaling complexes associated with DRM fractions.
View Article and Find Full Text PDFCeramide transfer protein (CERT) transfers ceramide from the endoplasmic reticulum to the Golgi complex, a process critical in synthesis and maintenance of normal levels of sphingolipids in mammalian cells. However, how its function is integrated into development and physiology of the animal is less clear. Here, we report the in vivo consequences of loss of functional CERT protein.
View Article and Find Full Text PDFPreviously, we reported that treatment of cells with sphingomyelinase inhibits human immunodeficiency virus type 1 (HIV-1) entry. Here, we determined by measuring fluorescence recovery after photobleaching that the lateral diffusion of CD4 decreased 4-fold following sphingomyelinase treatment, while the effective diffusion rate of CCR5 remained unchanged. Notably, sphingomyelinase treatment of cells did not influence gp120 binding, HIV-1 attachment, or fluid-phase and receptor-mediated endocytosis.
View Article and Find Full Text PDFBackground: HIV-1 entry into cells is a multifaceted process involving target cell CD4 and the chemokine receptors, CXCR4 or CCR5. The lipid composition of the host cell plays a significant role in the HIV fusion process as it orchestrates the appropriate disposition of CD4 and co-receptors required for HIV-1 envelope glycoprotein (Env)-mediated fusion. The cell membrane is primarily composed of sphingolipids and cholesterol.
View Article and Find Full Text PDFOur previous studies show that the depletion of cholesterol or sphingolipids (raft-associated lipids) from receptor-bearing adherent cell lines blocks HIV-1 entry and HIV-1 Env-mediated membrane fusion. Here we have evaluated the mechanism(s) by which these lipids contribute to the HIV-1 Env-mediated membrane fusion. We report the following: (1) GSL depletion from a suspension T lymphocyte cell line (Sup-T1) reduced subsequent fusion with HIV-1IIIB-expressing cells by 70%.
View Article and Find Full Text PDFRetrocyclin-1, a -defensin, protects target cells from human immunodeficiency virus, type 1 (HIV-1) by preventing viral entry. To delineate its mechanism, we conducted fusion assays between susceptible target cells and effector cells that expressed HIV-1 Env. Retrocyclin-1 (4 microm) completely blocked fusion mediated by HIV-1 Envs that used CXCR4 or CCR5 but had little effect on cell fusion mediated by HIV-2 and simian immunodeficiency virus Envs.
View Article and Find Full Text PDFHIV-1 infects host cells by sequential interactions of its fusion protein (gp120-gp41) with receptors CD4, CXCR4 and/or CCR5 followed by fusion of viral and host membranes. Studies indicate that additional factors such as receptor density and composition of viral and cellular lipids can dramatically modulate the fusion reaction. Lipid rafts, which primarily consist of sphingolipids and cholesterol, have been implicated for infectious route of HIV-1 entry.
View Article and Find Full Text PDFStructural transition can be induced in charged micelles by increasing the ionic strength of the medium. We have monitored the organization and dynamics of the functionally important tryptophan residues of gramicidin in spherical and rod-shaped sodium dodecyl sulfate micelles utilizing a combination of wavelength-selective fluorescence and related fluorescence approaches. Our results show that tryptophans in gramicidin, present in the single-stranded beta(6.
View Article and Find Full Text PDFStudies of ceramide metabolism and function in a wide range of biological processes have revealed a role for this lipid in regulating key cellular responses. Our research on the role of sphingolipids in HIV entry has led to the hypothesis that modulation of ceramide levels in target cells affects their susceptibility to HIV infection by rearranging HIV receptors. Cellular ceramide levels were modulated by application of pharmacological agents such as N-(4-hydroxyphenyl)retinamide (4-HPR, fenretinide), by treatment with sphingomyelinase (Smase), or by exogenous addition of long-chain ceramide, and determined after metabolic incorporation of [3H]sphingosine.
View Article and Find Full Text PDFWe have monitored the membrane-bound channel and nonchannel conformations of gramicidin utilizing red-edge excitation shift (REES), and related fluorescence parameters. In particular, we have used fluorescence lifetime, polarization, quenching, chemical modification, and membrane penetration depth analysis in addition to REES measurements to distinguish these two conformations. Our results show that REES of gramicidin tryptophans can be effectively used to distinguish conformations of membrane-bound gramicidin.
View Article and Find Full Text PDFGM3, a major ganglioside of T lymphocytes, promotes human immunodeficiency virus type 1 (HIV-1) entry via interactions with HIV-1 receptors and the viral envelope glycoprotein (Env). Increased GM3 levels in T lymphocytes and the appearance of anti-GM3 antibodies in AIDS patients have been reported earlier. In this study, we investigated the effect of GM3 regulation on HIV-1 entry by utilizing a mouse cell line (B16F10), which expresses exceptionally high levels of GM3.
View Article and Find Full Text PDFC-peptides derived from the HIV envelope glycoprotein transmembrane subunit gp41 C-terminal heptad repeat (C-HR) region are potent HIV fusion inhibitors. These peptides interact with the gp41 N-terminal heptad repeat (N-HR) region and block the gp41 six-helix bundle formation that is required for fusion. However, the parameters that govern this inhibition have yet to be elucidated.
View Article and Find Full Text PDFAlthough HIV uses CD4 and coreceptors (CCR5 and CXCR4) for productive infection of T cells, glycosphingolipids (GSL) may play ancillary roles in lymphoid and non-lymphoid cells. Interactions of the HIV Envelope Glycoprotein (Env) with GSL may help HIV in various steps of its pathogenesis. Physical-chemical aspects of the interactions between HIV Env and GSL leading to CD4-dependent entry into lymphocytes, the role of GSL in HIV transcytosis, and CD4-independent entry into non-lymphoid cells are reviewed.
View Article and Find Full Text PDFObjective: HIV-1 uses CD4 and chemokine receptors to enter cells. However, other target membrane components may also be involved. This study examines the role of glycosphingolipids (GSL) in HIV-1 entry into primary lymphocytes and its modulation by an inhibitor of GSL biosynthesis.
View Article and Find Full Text PDFWe had previously reported that glycosphingolipids (GSL) support human immunodeficiency virus type 1 (HIV-1) entry. In this study, we further examined this issue by expressing HIV-1 receptors in GSL-deficient GM95 cells. GM95 cells expressing low levels of CD4 and CXCR4 or CCR5 did not support HIV-1 Env-mediated fusion.
View Article and Find Full Text PDFThe N-terminal fusion peptide and the interfacial sequence preceding the transmembrane anchor of HIV-1 gp41 are required for viral fusion. Studies with synthetic peptides indicated that these regions function by destabilizing membranes, which is regarded as a crucial step in the membrane fusion reaction. However, it is not clear whether membrane destabilization is induced by these sequences in the intact gp41.
View Article and Find Full Text PDFWe have investigated the organization and dynamics of the functionally important tryptophan residues of erythroid spectrin in native and denatured conditions utilizing the wavelength-selective fluorescence approach. We observed a red edge excitation shift (REES) of 4 nm for the tryptophans in the case of spectrin in its native state. This indicates that tryptophans in spectrin are localized in a microenvironment of restricted mobility, and that the regions surrounding the spectrin tryptophans offer considerable restriction to the reorientational motion of the water dipoles around the excited state tryptophans.
View Article and Find Full Text PDFEnveloped animal viruses infect host cells by fusion of viral and target membranes. This crucial fusion event occurs either with the plasma membrane of the host cells at the physiological pH or with the endosomal membranes at low pH and is triggered by specific glycoproteins in the virus envelope. Both lipids and proteins play critical and co-operative roles in the fusion process.
View Article and Find Full Text PDFThe current general model of HIV viral entry involves the binding of the trimeric viral envelope glycoprotein gp120/gp41 to cell surface receptor CD4 and chemokine co-receptor CXCR4 or CCR5, which triggers conformational changes in the envelope proteins. Gp120 then dissociates from gp41, allowing for the fusion peptide to be inserted into the target membrane and the pre-hairpin configuration of the ectodomain to form. The C-terminal heptad repeat region and the leucine/isoleucine zipper region then form the thermostable six-helix coiled-coil, which drives the membrane merger and eventual fusion.
View Article and Find Full Text PDF