Lead (Pb) is a highly toxic heavy metal that causes significant health hazards and environmental damage. Thus, the detection and removal of Pb ions in freshwater sources are imperative for safeguarding public health and the environment. Moreover, the transformation of single resources into multiple high-value products is vital for achieving sustainable development goals (SDGs).
View Article and Find Full Text PDFThis study presents an innovative life cycle assessment (LCA)-centric approach for optimizing the mix design of alkali-activated materials (AAMs) as sustainable alternatives to ordinary portland cement (OPC). The AAMs are developed using electric arc furnace slag (EAFS) and fly ash as precursors. The environmental performance is evaluated using the ReCiPe midpoint methodology, considering both mass and economic allocation methods.
View Article and Find Full Text PDFLandfills serve as major repositories for products containing per- and polyfluoroalkyl substances (PFASs). These compounds have been documented in the resulting leachate, posing a significant threat to both surface water and groundwater quality. Long-chain perfluoro carboxylic acids (LC-PFCAs), which act as precursors to shorter-chain PFCAs, are particularly persistent in the environment.
View Article and Find Full Text PDFGiven the persistence and toxicity of long-chain perfluoroalkyl carboxylic acids (PFCAs) and their rising concentrations, there is an urgent need for effective removal strategies. This study investigated the adsorptive removal of PFCAs, specifically perfluorononanoic acid (PFNA) and perfluorodecanoic acid (PFDA), using biochar derived from wood and compost. Factors such as biochar size, weight, and initial PFCA concentrations were analyzed to assess their impact on adsorption efficiency over time.
View Article and Find Full Text PDFThe rapid and sensitive detection of bacterial contaminants using low-cost and portable point-of-need (PoN) biosensors has gained significant interest in water quality monitoring. Cell-imprinted polymers (CIPs) are emerging as effective and inexpensive materials for bacterial detection as they provide specific binding sites designed to capture whole bacterial cells, especially when integrated into PoN microfluidic devices. However, improving the sensitivity and detection limits of these sensors remains challenging.
View Article and Find Full Text PDFFor accurate and reliable analysis of microplastics (MPs) in wastewater (WW), it is imperative to comprehend the significance of pre-treating WW before analysis. The suspended solids (SS) in the matrix tend to adhere to the MPs during filtration, which interferes with the detection of the MPs. In this regard, the present study aims to develop and optimize a pretreatment method to improve the extraction efficiency of MPs from WW by reducing the SS.
View Article and Find Full Text PDFRhodosporidium toruloides has emerged as an excellent option for microbial lipid production due to its ability to accumulate up to 70 % of lipids per cell dry weight, consume multiple substrates such as glucose and xylose, and tolerate toxic compounds. Despite the potential of Rhodosporidium toruloides for high lipid yields, achieving these remains is a significant hurdle. A comprehensive review is essential to thoroughly evaluate the advancements in processes and technologies to enhance lipid production in R.
View Article and Find Full Text PDFFoods
June 2024
Research into microbial interactions during coffee processing is essential for developing new methods that adapt to climate change and improve flavor, thus enhancing the resilience and quality of global coffee production. This study aimed to investigate how microbial communities interact and contribute to flavor development in coffee processing within humid subtropical climates. Employing Illumina sequencing for microbial dynamics analysis, and high-performance liquid chromatography (HPLC) integrated with gas chromatography-mass spectrometry (GC-MS) for metabolite assessment, the study revealed intricate microbial diversity and associated metabolic activities.
View Article and Find Full Text PDFAromatic hydrocarbons like benzene, toluene, xylene, and ethylbenzene (BTEX) can escape into the environment from oil and gas operations and manufacturing industries posing significant health risks to humans and wildlife. Unlike conventional clean-up methods used, biological approaches such as bioremediation can provide a more energy and labour-efficient and environmentally friendly option for sensitive areas such as nature reserves and cities, protecting biodiversity and public health. BTEX contamination is often concentrated in the subsurface of these locations where oxygen is rapidly depleted, and biodegradation relies on anaerobic processes.
View Article and Find Full Text PDFIn a bid to explore the on-site biorefinery approach for conversion of forestry residues, lignocellulosic biomass into value-added products was studied. The bark white pine wood was subjected to the microwave technique of fast and slow hydrolysis under varying acid and biomass concentrations to produce levulinic acid (LA). The HCl (2% v/v) and plant biomass (1% w/v) were identified as the optimum conditions for fast wood hydrolysis (270 ºC for 12 sec), which led to maximum LA yield of 446.
View Article and Find Full Text PDFWorld J Microbiol Biotechnol
January 2024
In mining industries, biomining (comprising biooxidation and bioleaching) is implemented to extract metals from specific ores and waste streams with less environmental effect and expense. Usually, micron-sized gold particles are held in a crystal lattice of iron sulfide minerals and expensively extracted using common approaches. Researchers and industries are interested in developing recent technology and biologically sustainable methods in both pretreatment and further extraction steps for extracting this valuable metal from ores.
View Article and Find Full Text PDFEnergy and resource intensive mechanical and chemical pretreatment along with the use of hazardous chemicals are major bottlenecks in widespread lignocellulosic biomass utilization. Herein, the study investigated different pretreatment methods on spruce wood namely supercritical CO (scCO) pretreatment, ultrasound-assisted alkaline pretreatment, and acetosolv pulping-alkaline hydrogen peroxide bleaching, to enhance the enzymatic digestibility of wood using optimized enzyme cocktail. Also, the effect of scCO pretreatment on enzyme cocktail was investigated after optimizing the concentration and temperature of cellulolytic enzymes.
View Article and Find Full Text PDFRhodosporidium toruloides, an oleaginous yeast, is a potential feedstock for biodiesel production due to its ability to utilize lignocellulosic biomass-derived hydrolysate with a considerably high lipid titer of 50-70 % w/w. Hence, for the first-time environmental assessment of large-scale R. toruloides-based biodiesel production from wood hydrolysate and crude glycerol was conducted.
View Article and Find Full Text PDFThe research on mycelium-based biocomposites is increasing exponentially, due to their ability to be produced from renewable and sustainable substrates. In this sense, the present investigation explores the ability of to grow on textile residues and form mycelium-based biocomposites. The mycelium was able to grow on four types of textile residues including white and coloured cotton and polyester mixtures and acted as a binder between the textile fibres.
View Article and Find Full Text PDFThe rapid, inexpensive, and on-site detection of bacterial contaminants using highly sensitive and specific microfluidic sensors is attracting substantial attention in water quality monitoring applications. Cell-imprinted polymers (CIPs) have emerged as robust, cost-effective, and versatile recognition materials with selective binding sites for capturing whole bacteria. However, electrochemical transduction of the binding event to a measurable signal within a microfluidic device to develop easy-to-use, compact, portable, durable, and affordable sensors remains a challenge.
View Article and Find Full Text PDFThe occurrence of antibiotic residues in diverse water sources has long been acknowledged as a potential health concern due to the emergence and spread of antibiotic-resistant bacteria and genes. However, there have been limited studies into the presence of antibiotic-metal complexes (AMCs) in real-time wastewater matrices, and their impact on wastewater microbial communities. The present work, in this regard, investigated the stability of Imipenem-metal complexes (Me = Mg (II), Ca (II), Fe (II), Cu (II), and Al (III)) with computational studies, stoichiometry with potentiometric measurements, and their antibacterial activity towards wastewater model microorganisms- Bacillus subtilis (B.
View Article and Find Full Text PDFMonoaromatic hydrocarbons such as benzene, toluene, ethylbenzene, and o, m, and p-xylenes (BTEX) are high-risk pollutants because of their mutagenic and carcinogenic nature. These pollutants are found with elevated levels in groundwater and soil in Canada at several contaminated sites. The intrinsic microbes present in the subsurface have the potential to degrade pollutants by their metabolic pathways and convert them to non-toxic products.
View Article and Find Full Text PDFWhey is a dairy residue generated during the production of cheese and yogurt. Whey contains mainly lactose and proteins, contributing to its high chemical oxygen demand (COD). Current environmental regulations request proper whey disposal to avoid environmental pollution.
View Article and Find Full Text PDFEnzymes have great potential in bioprocess engineering due to their green and mild reaction conditions. However, there are challenges to their application, such as enzyme extraction and purification costs, enzyme recovery, and long reaction time. Enzymatic reaction rate enhancement and enzyme immobilization have the potential to overcome some of these challenges.
View Article and Find Full Text PDFCurr Opin Environ Sci Health
August 2023
The COVID-19 pandemic led to an increase in plastic used for medical purposes such as personal protective equipment and packaging materials. A very low share of plastics is recycled while the majority is sent to landfills. This plastic may degrade over time to form microplastics which may pollute land, air, and water sources.
View Article and Find Full Text PDFMicrobial production of 2,3-butanediol (BDO) has received considerable attention as a promising alternate to fossil-derived BDO. In our previous work, BDO concentration >100 g/L was accumulated using brewer's spent grain (BSG) via microbial routes which was followed by techno-economic analysis of the bioprocess. In the present work, a life cycle assessment (LCA) was conducted for BDO production from the fermentation of BSG to identify the associated environmental impacts.
View Article and Find Full Text PDFDue to their widespread occurrence and the inadequate removal efficiencies by conventional wastewater treatment plants, emerging contaminants (ECs) have recently become an issue of great concern. Current ongoing studies have focused on different physical, chemical, and biological methods as strategies to avoid exposing ecosystems to significant long-term risks. Among the different proposed technologies, the enzyme-based processes rise as green biocatalysts with higher efficiency yields and lower generation of toxic by-products.
View Article and Find Full Text PDFAs an efficient method to remove contaminants from highly polluted sites, enzyme biodegradation addresses unresolved issues such as bioremediation inefficiency. In this study, the key enzymes involved in PAH degradation were brought together from different arctic strains for the biodegradation of highly contaminated soil. These enzymes were produced via a multi-culture of psychrophilic Pseudomonas and Rhodococcus strains.
View Article and Find Full Text PDF