Publications by authors named "Satinder Dahiya"

Foxp3 T-regulatory (Treg) cells are capable of suppressing immune responses. Lysine acetylation is a key mechanism of post-translational control of various transcription factors, and when acetylated, Foxp3 is stabilized and transcriptionally active. Therefore, understanding the roles of various histone/protein deacetylases (HDAC) are key to promoting Treg-based immunotherapy.

View Article and Find Full Text PDF

Background: Vascularized composite allografts (VCA) are novel, life-enhancing forms of transplantation (Tx). However, host immune responses to the various VCA components, especially those involving skin, are complex and make selection of appropriate therapy challenging. Although the interplay between Foxp3+ T regulatory (Treg) cells and CD4 and CD8 effector T cells is of central importance in determining the acceptance or rejection of solid organ allografts, there is little information available concerning the contribution of Treg cells to VCA survival.

View Article and Find Full Text PDF

Current interest in Foxp3+ T-regulatory (Treg) cells as therapeutic targets in transplantation is largely focused on their harvesting pre-transplant, expansion and infusion post-transplantation. An alternate strategy of pharmacologic modulation of Treg function using histone/protein deacetylase inhibitors (HDACi) may allow more titratable and longer-term dosing. However, the effects of broadly acting HDACi vary, such that HDAC isoform-selective targeting is likely required.

View Article and Find Full Text PDF

Immune cells function in diverse metabolic environments. Tissues with low glucose and high lactate concentrations, such as the intestinal tract or ischemic tissues, frequently require immune responses to be more pro-tolerant, avoiding unwanted reactions against self-antigens or commensal bacteria. T-regulatory cells (Tregs) maintain peripheral tolerance, but how Tregs function in low-glucose, lactate-rich environments is unknown.

View Article and Find Full Text PDF

Foxp3+ T-regulatory (Treg) cells are known to suppress protective host immune responses to a wide variety of solid tumors, but their therapeutic targeting is largely restricted to their transient depletion or "secondary" modulation, e.g. using anti-CTLA-4 monoclonal antibody.

View Article and Find Full Text PDF

Background: HIV-1 gene expression is driven by the long terminal repeat (LTR), which contains many binding sites shown to interact with an array of host and viral factors. Selective pressures within the host as well as the low fidelity of reverse transcriptase lead to changes in the relative prevalence of genetic variants within the HIV-1 genome, including the LTR, resulting in viral quasispecies that can be differentially regulated and can potentially establish niches within specific cell types and tissues.

Methods: Utilizing flow cytometry and electromobility shift assays, specific single-nucleotide sequence polymorphisms (SNPs) were shown to alter both the phenotype of LTR-driven transcription and reactivation.

View Article and Find Full Text PDF

Transcriptional control of the human immunodeficiency virus type 1 (HIV-1) promoter, the long terminal repeat (LTR), is achieved by interactions with cis-acting elements present both upstream and downstream of the start site. In silico transcription factor binding analysis of the HIV-1 subtype B LTR sequences revealed a potential downstream CCAAT enhancer binding protein (C/EBP) binding site. This binding site (+158 to+172), designated DS3, was found to be conserved in 67% of 3,858 unique subtype B LTR sequences analyzed in terms of nucleotide sequence as well as physical location in the LTR.

View Article and Find Full Text PDF

HIV-associated neurologic disease continues to be a significant complication in the era of highly active antiretroviral therapy. A substantial subset of the HIV-infected population shows impaired neuropsychological performance as a result of HIV-mediated neuroinflammation and eventual central nervous system (CNS) injury. CNS compartmentalization of HIV, coupled with the evolution of genetically isolated populations in the CNS, is responsible for poor prognosis in patients with AIDS, warranting further investigation and possible additions to the current therapeutic strategy.

View Article and Find Full Text PDF

The human immunodeficiency virus type 1 (HIV-1) promoter or long-terminal repeat (LTR) regulates viral gene expression by interacting with multiple viral and host factors. The viral transactivator protein Tat plays an important role in transcriptional activation of HIV-1 gene expression. Functional domains of Tat and its interaction with transactivation response element RNA and cellular transcription factors have been examined.

View Article and Find Full Text PDF

Despite the success of highly active antiretroviral therapy in combating human immunodeficiency virus type 1 (HIV-1) infection, the virus still persists in viral reservoirs, often in a state of transcriptional silence. This review focuses on the HIV-1 protein and regulatory machinery and how expanding knowledge of the function of individual HIV-1-coded proteins has provided valuable insights into understanding HIV transcriptional regulation in selected susceptible cell types. Historically, Tat has been the most studied primary transactivator protein, but emerging knowledge of HIV-1 transcriptional regulation in cells of the monocyte-macrophage lineage has more recently established that a number of the HIV-1 accessory proteins like Vpr may directly or indirectly regulate the transcriptional process.

View Article and Find Full Text PDF

A tetravalent dengue vaccine that can protect against all four serotypes of dengue viruses is a global priority. The host-receptor binding, multiple neutralizing epitope-containing carboxy-terminal region of the dengue envelope protein, known as domain III (EDIII), has emerged as a promising subunit vaccine antigen. One strategy to develop a tetravalent dengue subunit vaccine envisages mixing recombinant EDIIIs, corresponding to the four dengue virus serotypes.

View Article and Find Full Text PDF

There is currently no vaccine to prevent dengue (DEN) virus infection, which is caused by any one of four closely related serotypes, DEN-1, DEN-2, DEN-3, or DEN-4. A DEN vaccine must be tetravalent, because immunity to a single serotype does not offer cross-protection against the other serotypes. We have developed a novel tetravalent chimeric protein by fusing the receptor-binding envelope domain III (EDIII) of the four DEN virus serotypes.

View Article and Find Full Text PDF