Replacement therapy with exogenous recombinant factor VIII (rFVIII) to control bleeding episodes results in the development of inhibitory antibodies in 15% to 30% of hemophilia A patients. The inhibitory antibodies are mainly directed against specific and universal immunodominant epitopes located in the C2 domain. Previously we have shown that complexation of O-phospho-L-serine (phosphatidylserine head group) with the phospholipid binding region of the C2 domain can lead to an overall reduction in the immunogenicity of rFVIII.
View Article and Find Full Text PDFRecombinant human factor VIII (rFVIII), a multidomain glycoprotein is used in replacement therapy for treatment of hemophilia A. Unfortunately, 15%-30% of the treated patients develop inhibitory antibodies. The pathogenesis of antibody development is not completely understood.
View Article and Find Full Text PDFThe physical phenomenon of aggregation can have profound impact on the stability of therapeutic proteins. This study focuses on the aggregation behavior of recombinant human FVIII (rFVIII), a multi-domain protein used as the first line of therapy for hemophilia A, a bleeding disorder caused by the deficiency or dysfunction of factor VIII (FVIII). Thermal denaturation of rFVIII was investigated using circular dichroism (CD) spectroscopy and size exclusion chromatography (SEC).
View Article and Find Full Text PDFFactor VIII (FVIII) is a multi-domain protein that is important in the clotting cascade. Its deficiency causes Hemophilia A, a bleeding disorder. The unfolding of protein domains can lead to physical instability such as aggregation, and hinder their use in replacement therapy.
View Article and Find Full Text PDFFactor VIII is a multidomain protein composed of A1, A2, B, A3, C1, and C2 domains. Deficiency or dysfunction of factor VIII causes hemophilia A, a bleeding disorder. Administration of exogenous recombinant factor VIII as a replacement leads to development of inhibitory antibodies against factor VIII in 15-30% of hemophilia A patients.
View Article and Find Full Text PDFDrug carriers such as liposomes provide a means to alter the biodisposition of drugs and to achieve concentration-time exposure profiles in tissue or tumor that are not readily accomplished with free drug. These changes in biodisposition can improve treatment efficacy. For hydrophobic drugs, incorporation in liposome carriers can increase drug solubility markedly.
View Article and Find Full Text PDFCochleates are lipid-based delivery system that have found application in drug and gene delivery. They are precipitates, formed as a result of interaction between cations (e.g.
View Article and Find Full Text PDFFactor VIII (FVIII), a plasma glycoprotein, is an essential cofactor in the blood coagulation cascade. It is a multidomain protein, known to bind to phosphatidylserine (PS)-containing membranes. Based on X-ray and electron crystallography data, binding of FVIII to PS-containing membranes has been proposed to occur only via the C2 domain.
View Article and Find Full Text PDFPaclitaxel, a unique antimitotic chemotherapy agent that inhibits cell division by binding to microtubules and prevents them from "depolymerizing," has received widespread interest because of its efficacy in fighting certain types of cancer, including breast and ovarian cancer. Paclitaxel undergoes aggregation at millimolar concentrations in both aqueous media and solvents of low polarity (mimicking hydrophobic environments). Its aggregation may have impact on its aqueous stability and its ability to stabilize microtubules.
View Article and Find Full Text PDFThe molecular site of anesthetic action remains an area of intense research interest. It is not clear whether general anesthetics act through direct binding to proteins or by perturbing the membrane properties of excitable tissues. Several studies indicate that anesthetics affect the properties of either membrane lipids or proteins.
View Article and Find Full Text PDF