Publications by authors named "Sathya Sadhasivam"

The fabrication of reliable, green chemistry processes for nanomaterial synthesis is an important aspect of nanotechnology. The biosynthesis of single-pot room-temperature reduction of aqueous chloroaurate ions by Streptomyces hygroscopicus cells has been reported to facilitate the development of an industrially viable greener methodology for the synthesis of technologically important gold nanoparticles (AuNPs). Multidimensional AuNPs are generated via the manipulation of key growth parameters, including solution pH and reaction time.

View Article and Find Full Text PDF

A bio-nanofilm consisting of a tetrad nanomaterial (nanotubes, nanoparticles, DNA, polymer) was fabricated utilizing in situ reduction and noncovalent interactions and it displayed effective antibacterial activity and biocompatibility. This bio-nanofilm was composed of homogenous silver nanoparticles (AgNPs) coated on single-walled carbon nanotubes (SWCNTs), which were later hybridized with DNA and stabilized in poly(vinyl alcohol) (PVA) in the presence of a surfactant with the aid of ultrasonication. Electron microscopy and bio-AFM (atomic force microscopy) images were used to assess the morphology of the nanocomposite (NC) structure.

View Article and Find Full Text PDF

Biological reduction of aqueous silver ions by extracellular components of Streptomyces hygroscopicus has facilitated the development of industrially viable greener methods for the synthesis of technologically important silver nanoparticles (AgNPs). The synthesized aqueous products showed the characteristic absorption spectra at 420 nm, which confirmed the presence of AgNPs. X-ray diffraction patterns displayed typical peaks of crystalline silver at approximately 38 degrees , approximately 45 degrees and approximately 65 degrees .

View Article and Find Full Text PDF