Low-dimensional materials, such as MoS, hold promise for use in a host of emerging applications, including flexible, wearable sensors due to their unique electrical, thermal, optical, mechanical, and tribological properties. The implementation of such devices requires an understanding of adhesive phenomena at the interfaces between these materials. Here, we describe combined nanoscale transmission electron microscopy (TEM)/atomic force microscopy (AFM) experiments and simulations measuring the work of adhesion () between self-mated contacts of ultrathin nominally amorphous and nanocrystalline MoS films deposited on Si scanning probe tips.
View Article and Find Full Text PDF