To illustrate the occurrences of extreme events in the neural system we consider a pair of Chialvo neuron maps. Importantly, we explore the dynamics of the proposed system by including a flux term between the neurons. Primarily, the dynamical behaviors of the coupled Chialvo neurons are examined using the Lyapunov spectrum and bifurcation analysis.
View Article and Find Full Text PDFIn this study, the hybrid conductance-based adaptive exponential integrate and fire (CadEx) neuron model is proposed to determine the effect of magnetic flux on conductance-based neurons. To begin with, bifurcation analysis is carried out in relation to the input current, resetting parameter, and adaptation time constant in order to comprehend dynamical transitions. We exemplify that the existence of period-1, period-2, and period-4 cycles depends on the magnitude of input current via period doubling and period halving bifurcations.
View Article and Find Full Text PDFA Locally active memristors can mimic neural synapses, resulting in rich neuro-morphological dynamics in biological neurons. To illustrate the impact of a local active memristive synapse, we consider coupled Hindmarsh-Rose (HR) neurons. Firstly, the dynamical transitions of the proposed system are investigated using bifurcation analysis and Lyapunov exponents, and we find that the transition between periodic and chaotic states depends on the input currents and memristive coupling strength.
View Article and Find Full Text PDFVibrational energy harvesters are capable of converting low-frequency broad-band mechanical energy into electrical power and can be used in implantable medical devices and wireless sensors. With the use of such energy harvesters, it is feasible to generate continuous power that is more reliable and cost-effective. According to previous findings, the energy harvester can offer rich complex dynamics, one of which is obtaining the synchronization behavior, which is intriguing to achieve desirable power from energy harvesters.
View Article and Find Full Text PDFExtreme events are unusual and rare large-amplitude fluctuations can occur unexpectedly in nonlinear dynamical systems. Events above the extreme event threshold of the probability distribution of a nonlinear process characterize extreme events. Different mechanisms for the generation of extreme events and their prediction measures have been reported in the literature.
View Article and Find Full Text PDF