Front Microbiol
June 2022
Antimicrobial growth promoters (AGPs) are commonly used in broiler production. There is a huge societal concern around their use and their contribution to the proliferation of antimicrobial resistance (AMR) in food-producing animals and dissemination to humans or the environment. However, there is a paucity of comprehensive experimental data on their impact on poultry production and the AMR resistome.
View Article and Find Full Text PDFlow-molecular-mass (LMM) Penicillin-binding proteins (PBPs) help in hydrolysing the peptidoglycan fragments from their cell wall and recycling them back into the growing peptidoglycan matrix, in addition to their reported involvement in biofilm formation. Biofilms are external slime layers of extra-polymeric substances that sessile bacterial cells secrete to form a habitable niche for themselves. Here, we hypothesize the involvement of LMM PBPs in regulating the nature of exopolysaccharides (EPS) prevailing in its extra-polymeric substances during biofilm formation.
View Article and Find Full Text PDFMultidrug-resistant Klebsiella pneumoniae has emerged as one of the deadliest opportunistic nosocomial pathogens that forms biofilm for the establishment of chronic K. pneumoniae infections. Herein, we made an attempt to identify the genes involved in biofilm formation in the strain K.
View Article and Find Full Text PDFSilver nanoparticles (AgNPs) are used as an antimicrobial agent since the ages. However, it is unknown whether AgNPs exert inhibitory effects over the bacterial cells carrying metallo-beta-lactamases (MBLs). Here, using bio-surfactin stabilised AgNPs having a size range from 5 to 25 nm we established its antimicrobial effects against NDMs harbouring cells.
View Article and Find Full Text PDFThe low-molecular-mass penicillin-binding proteins, involved in peptidoglycan recycling can also produce peptidoglycan fragments capable of activating an innate immune response in host. To investigate how these proteins in Enterobacteriaceae play a role to elicit/evade innate immune responses during infections, we deleted certain endopeptidases and dd-carboxypeptidases from Escherichia coli CS109 and studied the viability of these mutants in macrophages. The ability of infected macrophages to exert oxidative killing, express surface activation markers TLR2, MHC class II and release TNFα, were assessed.
View Article and Find Full Text PDFDuring the peptidoglycan (PG) maturation of mycobacteria, the glycan strands are interlinked by both 3-3 (between two -diaminopimelic acids [-DAPs]) and 4-3 cross-links (between d-Ala and -DAP), though there is a predominance (60 to 80%) of 3-3 cross-links. The dd-carboxypeptidases (dd-CPases) act on pentapeptides to generate tetrapeptides that are used by ld-transpeptidases as substrates to form 3-3 cross-links. Therefore, dd-CPases play a crucial role in mycobacterial PG cross-link formation.
View Article and Find Full Text PDFEscherichia coli PBP5, a DD-carboxypeptidase (DD-CPase), helps in maintaining cell shape and intrinsic β-lactam resistance. Though PBP5 does not have β-lactamase activity under physiological pH, it has a common but shorter Ω-like loop resembling class A β-lactamases. However, such Ω-like loop lacks the key glutamic acid residue that is present in β-lactamases.
View Article and Find Full Text PDFFEMS Microbiol Lett
August 2015
Bacterial surface components have a major role in the development of biofilms. In the present study, the effect of Escherichia coli O8-antigen on biofilms was investigated using two E. coli K-12 derived strains that differed only in the O8-antigen biosynthesis.
View Article and Find Full Text PDFDD-carboxypeptidases (DD-CPases) are low-molecular-mass (LMM) penicillin-binding proteins (PBPs) that are mainly involved in peptidoglycan remodelling, but little is known about the dd-CPases of mycobacteria. In this study, a putative DD-CPase of Mycobacterium smegmatis, MSMEG_2433 is characterized. The gene for the membrane-bound form of MSMEG_2433 was cloned and expressed in Escherichia coli in its active form, as revealed by its ability to bind to the Bocillin-FL (fluorescent penicillin).
View Article and Find Full Text PDFSIRT1, a class III histone deacetylase, protects neurons in various models of neurodegenerative diseases. We previously described that neuroprotection by SIRT1 is independent of its catalytic activity. To elucidate how SIRT1 protects neurons, we performed a mass spectrometric screen to find SIRT1-interacting proteins.
View Article and Find Full Text PDFHeat shock factor 1 (HSF1) protects neurons from death caused by the accumulation of misfolded proteins. It is believed that this protective effect is mediated by the transcriptional stimulation of genes encoding heat shock proteins (HSPs), a family of chaperones that refold or degrade misfolded proteins. Whether HSF1 is protective when neuronal death is not caused by protein misfolding has not been studied.
View Article and Find Full Text PDFMreB is a cytoskeletal protein, which is responsible for maintaining proper cellular morphology and is essential for cell survival. Likewise, penicillin-binding protein 5 (PBP5) helps in maintaining cell shape, though non-essential for survival. The contradicting feature of these two proteins paves the way for this study, wherein we attempt to draw a relation on the nature of distribution of MreB in PBP deletion mutants.
View Article and Find Full Text PDF