Vaccines targeting the complex pre-erythrocytic stage of Plasmodium parasites may benefit from the inclusion of multiple antigens. However, discerning protective effects can be difficult because newer candidates may not be as protective as leading antigens like the circumsporozoite protein (CSP) in the conventional pre-clinical mouse model. We developed a modified mouse model challenge strategy that maximizes the contribution of T cells induced by novel candidate antigens at the sporozoite challenge time point and used this approach to test Plasmodium P36 and P52 vaccine candidates alone and in concert with non-protective doses of CSP.
View Article and Find Full Text PDFVaccines targeting the complex pre-erythrocytic stage of parasites may benefit from inclusion of multiple antigens. However, discerning protective effects can be difficult because newer candidates may not be as protective as leading antigens like the circumsporozoite protein (CSP) in the conventional pre-clinical mouse model. We developed a modified mouse model challenge strategy that maximizes the contribution of T cells induced by novel candidate antigens at the sporozoite challenge time point and used this approach to test P36 and P52 vaccine candidates alone and in concert with non-protective doses of CSP.
View Article and Find Full Text PDFA systems analysis was conducted to determine the potential molecular mechanisms underlying differential immunogenicity and protective efficacy results of a clinical trial of the radiation-attenuated whole-sporozoite PfSPZ vaccine in African infants. Innate immune activation and myeloid signatures at prevaccination baseline correlated with protection from P. falciparum parasitemia in placebo controls.
View Article and Find Full Text PDFFront Cell Infect Microbiol
April 2024
Kinetoplastid pathogens including , , and species, are early diverged, eukaryotic, unicellular parasites. Functional understanding of many proteins from these pathogens has been hampered by limited sequence homology to proteins from other model organisms. Here we describe the development of a high-throughput deep mutational scanning approach in that facilitates rapid and unbiased assessment of the impacts of many possible amino acid substitutions within a protein on cell fitness, as measured by relative cell growth.
View Article and Find Full Text PDFRadiation-attenuated sporozoite (RAS) vaccines can completely prevent blood stage Plasmodium infection by inducing liver-resident memory CD8 T cells to target parasites in the liver. Such T cells can be induced by 'Prime-and-trap' vaccination, which here combines DNA priming against the P. yoelii circumsporozoite protein (CSP) with a subsequent intravenous (IV) dose of liver-homing RAS to "trap" the activated and expanding T cells in the liver.
View Article and Find Full Text PDFMalaria is caused by parasites and was responsible for over 247 million infections and 619,000 deaths in 2021. Radiation-attenuated sporozoite (RAS) vaccines can completely prevent blood stage infection by inducing protective liver-resident memory CD8 T cells. Such T cells can be induced by 'prime-and-trap' vaccination, which here combines DNA priming against the circumsporozoite protein (CSP) with a subsequent intravenous (IV) dose of liver-homing RAS to "trap" the activated and expanding T cells in the liver.
View Article and Find Full Text PDFMother-to-child transmission is a major route for infections in newborns. Vaccination in mothers to leverage the maternal immune system is a promising approach to vertically transfer protective immunity. During infectious disease outbreaks, such as the 2016 Zika virus (ZIKV) outbreak, rapid availability of vaccines can prove critical in reducing widespread disease burden.
View Article and Find Full Text PDFThe rapid evolution of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron variants has emphasized the need to identify antibodies with broad neutralizing capabilities to inform future monoclonal therapies and vaccination strategies. Herein, we identified S728-1157, a broadly neutralizing antibody (bnAb) targeting the receptor-binding site (RBS) that was derived from an individual previously infected with WT SARS-CoV-2 prior to the spread of variants of concern (VOCs). S728-1157 demonstrated broad cross-neutralization of all dominant variants, including D614G, Beta, Delta, Kappa, Mu, and Omicron (BA.
View Article and Find Full Text PDFMalaria-causing parasites have a complex life cycle and present numerous antigen targets that may contribute to protective immune responses. The currently recommended vaccine-RTS,S-functions by targeting the Plasmodium falciparum circumsporozoite protein (CSP), which is the most abundant surface protein of the sporozoite form responsible for initiating infection of the human host. Despite showing only moderate efficacy, RTS,S has established a strong foundation for the development of next-generation subunit vaccines.
View Article and Find Full Text PDFNDV-HXP-S is a recombinant Newcastle disease virus-based vaccine against SARS-CoV-2, which expresses an optimized (HexaPro) spike protein on its surface. The vaccine can be produced in embryonated chicken eggs using the same process as that used for the production of the vast majority of influenza virus vaccines. Here, we performed a secondary analysis of the antibody responses after vaccination with inactivated NDV-HXP-S in a phase 1 clinical study in Thailand.
View Article and Find Full Text PDFBiomedical personnel can become contaminated with nonhazardous reagents used in the laboratory. We describe molecular studies performed on nasal secretions collected longitudinally from asymptomatic laboratory coworkers to determine if they were infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) circulating in the community or with SARS-CoV-2 DNA from a plasmid vector. Participants enrolled in a prospective study of incident SARS-CoV-2 infection had nasal swabs collected aseptically by study staff at enrollment, followed by weekly self-collection of anterior nasal swabs.
View Article and Find Full Text PDFPoor biochemical characteristics have severely hampered the development of the promising malaria transmission-blocking vaccine candidate Pfs48/45. In this issue of Immunity, McLeod et al. applied structure-guided vaccine design to transform this protein into a stable, high-producing antigen that elicits exceptional blocking antibodies, renewing its promise as a tool to fight malaria.
View Article and Find Full Text PDFGenetically engineered live sporozoites constitute a potential platform for creating consistently attenuated, genetically defined, whole-parasite vaccines against malaria through targeted gene deletions. Such genetically attenuated parasites (GAPs) do not require attenuation by irradiation or concomitant drug treatment. We previously developed a (Pf) GAP with deletions in , , and genes (PfGAP3KO) and demonstrated its safety and immunogenicity in humans.
View Article and Find Full Text PDFBackground: Identification of lymph nodes (LNs) draining a specific site or in obese macaques can be challenging.
Methods: Indocyanine Green (ICG) was administered intradermal (ID), intramuscular, in the oral mucosa, or subserosal in the colon followed by Near Infrared (NIR) imaging.
Results: After optimization to maximize LN identification, intradermal ICG was successful in identifying 50-100% of the axillary/inguinal LN at a site.
Blocking Plasmodium, the causative agent of malaria, at the asymptomatic pre-erythrocytic stage would abrogate disease pathology and prevent transmission. However, the lack of well-defined features within vaccine-elicited antibody responses that correlate with protection represents a major roadblock to improving on current generation vaccines. We vaccinated mice (BALB/cJ and C57BL/6J) with Py circumsporozoite protein (CSP), the major surface antigen on the sporozoite, and evaluated vaccine-elicited humoral immunity and identified immunological factors associated with protection after mosquito bite challenge.
View Article and Find Full Text PDFVaccine-induced sterilizing protection from infection by Plasmodium parasites, the pathogens that cause malaria, will be essential in the fight against malaria as it would prevent both malaria-related disease and transmission. Stopping the relatively small number of parasites injected by the mosquito before they can migrate from the skin to the liver is an attractive means to this goal. Antibody-eliciting vaccines have been used to pursue this objective by targeting the major parasite surface protein present during this stage, the circumsporozoite protein (CSP).
View Article and Find Full Text PDFVaccines against Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) have been highly efficient in protecting against Coronavirus Disease 2019 (COVID-19). However, the emergence of viral variants that are more transmissible and, in some cases, escape from neutralizing antibody responses has raised concerns. Here, we evaluated recombinant protein spike antigens derived from wild-type SARS-CoV-2 and from variants B.
View Article and Find Full Text PDFThe emergence of SARS-CoV-2 variants threatens current vaccines and therapeutic antibodies and urgently demands powerful new therapeutics that can resist viral escape. We therefore generated a large nanobody repertoire to saturate the distinct and highly conserved available epitope space of SARS-CoV-2 spike, including the S1 receptor binding domain, N-terminal domain, and the S2 subunit, to identify new nanobody binding sites that may reflect novel mechanisms of viral neutralization. Structural mapping and functional assays show that indeed these highly stable monovalent nanobodies potently inhibit SARS-CoV-2 infection, display numerous neutralization mechanisms, are effective against emerging variants of concern, and are resistant to mutational escape.
View Article and Find Full Text PDFDespite global vaccination efforts, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continues to evolve and spread globally. Relatively high vaccination rates have been achieved in most regions of the United States and several countries worldwide. However, access to vaccines in low- and mid-income countries (LMICs) is still suboptimal.
View Article and Find Full Text PDFBackground: Coronavirus disease 2019 (COVID-19) is associated with endothelial activation and coagulopathy, which may be related to pre-existing or infection-induced pro-thrombotic autoantibodies such as those targeting angiotensin II type I receptor (AT1R-Ab).
Methods: We compared prevalence and levels of AT1R-Ab in COVID-19 cases with mild or severe disease to age and sex matched negative controls utilizing multivariate logistic and quantile regression adjusted for comorbidities including hypertension, diabetes, and heart disease.
Results: There were trends toward increased prevalence (50% vs.
Several severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants have arisen that exhibit increased viral transmissibility and partial evasion of immunity induced by natural infection and vaccination. To address the specific antibody targets that were affected by recent viral variants, we generated 43 monoclonal antibodies (mAbs) from 10 convalescent donors that bound three distinct domains of the SARS-CoV-2 spike. Viral variants harboring mutations at K417, E484, and N501 could escape most of the highly potent antibodies against the receptor binding domain (RBD).
View Article and Find Full Text PDFBackground: Highly efficacious vaccines against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have been developed. However, the emergence of viral variants that are more infectious than the earlier SARS-CoV-2 strains is concerning. Several of these viral variants have the potential to partially escape neutralizing antibody responses, warranting continued immune-monitoring.
View Article and Find Full Text PDFCerebral malaria (CM) affects children and adults, but brain swelling is more severe in children. To investigate features associated with brain swelling in malaria, we performed blood profiling and brain MRI in a cohort of pediatric and adult patients with CM in Rourkela, India, and compared them with an African pediatric CM cohort in Malawi. We determined that higher plasma Plasmodium falciparum histidine rich protein 2 (PfHRP2) levels and elevated var transcripts that encode for binding to endothelial protein C receptor (EPCR) were linked to CM at both sites.
View Article and Find Full Text PDFBoth subunit and attenuated whole-sporozoite vaccination strategies against Plasmodium infection have shown promising initial results in malaria-naive westerners but less efficacy in malaria-exposed individuals in endemic areas. Here, we demonstrate proof of concept by using a rodent malaria model in which non-neutralizing antibodies (nNAbs) can directly interfere with protective anti-circumsporozoite protein (CSP) humoral responses. We characterize a monoclonal antibody, RAM1, against Plasmodium yoelii sporozoite major surface antigen CSP.
View Article and Find Full Text PDF