Publications by authors named "Satheeswaran Balasubramanian"

Copper oxide nanoparticles (CuO NPs) are widely employed in various industrial and biomedical applications owing to their enhanced physicochemical characteristics. However, concerns regarding their adverse effects on biological systems upon entering the environment remain unexplored. The generation of reactive oxygen species (ROS) is one of the primary mechanisms in CuO NPs induced toxicity.

View Article and Find Full Text PDF

Nanoparticles, due to their exceptional physicochemical properties are used in our day-to-day environment. They are currently not regulated which might lead to increased levels in the biological systems causing adverse effects. However, the overall mechanism behind nanotoxicity remains elusive.

View Article and Find Full Text PDF

Background: Clear cell Renal Cell Carcinoma (ccRCC) is one of the most prevalent types of kidney cancer. Unravelling the genes responsible for driving cellular changes and the transformation of cells in ccRCC pathogenesis is a complex process.

Objective: In this study, twelve microarray ccRCC datasets were chosen from the gene expression omnibus (GEO) database and subjected to integrated analysis.

View Article and Find Full Text PDF

Angiogenesis is the process of new blood vessel formation from preexisting vasculature. It is an integral component in normal embryonic development and tissue repair. Dysregulation of angiogenesis might lead to tissue ischemia (resulting from reduced blood vessel formation) or major diseases such as cancer (abnormal vascular growth).

View Article and Find Full Text PDF

Copper oxide nanoparticles (CuO NPs) are being used in healthcare industries due to its antimicrobial properties. The increased consumption of NPs could lead to the rise of these NPs in the environment affecting the biological systems. Altered microbiome has been correlated to disease pathology in humans as well as xenobiotic toxicity in experimental animal models.

View Article and Find Full Text PDF

Tenorite or copper oxide nanoparticles (CuO NPs) are extensively used in biomedical fields due to their unique physicochemical properties. Increased usage of these NPs leads to release in the environment, affecting varied ecosystems and the biota within them, including humans. The effect of these NPs can be evaluated with zebrafish, an excellent complementary model for nanotoxicity studies.

View Article and Find Full Text PDF

Biologically important metals regulate cellular homeostasis in living systems. Anthropogenic exposure to these metals can cause adverse effects, including an increased incidence of diseases in humans such as cancer, lung, and cardiovascular defects. However, the effects of metals and the common genes/signaling pathways involved in metal toxicity have not been elucidated.

View Article and Find Full Text PDF

Garcinia gummi-gutta, also known as Garcinia cambogia, is a member of the Guttiferae family. Garcinia is a polygamous genus consisting 200 species of trees and shrubs. It is found in different zones of the planet including Asia's tropical regions.

View Article and Find Full Text PDF

Fluoride, one of the global groundwater contaminants, is ubiquitous in our day-to-day life from various natural and anthropogenic sources. Numerous , , and epidemiological studies are conducted to understand the effect of fluoride on biological systems. A low concentration of fluoride is reported to increase oral health, whereas chronic exposure to higher concentrations causes fluoride toxicity (fluorosis).

View Article and Find Full Text PDF

Fluoride is one of the major toxicants in the environment and is often found in drinking water at higher concentrations. Living organisms including humans exposed to high fluoride levels are found to develop mild-to-severe detrimental pathological conditions called fluorosis. Fluoride can cross the hematoencephalic barrier and settle in various brain regions.

View Article and Find Full Text PDF

Copper oxide nanoparticles (CuO-NPs) are used in various industrial and commercial products due to their enhanced physicochemical properties. The vast consumption increases their exposure in the environment, thereby affecting the ecosystem. Even with the rise in research towards understanding their toxicity, the major signaling cascades and key genes involved in CuO-NPs remain elusive due to the various attributes involved (size, shape, charge, coating in terms of nanoparticles, and dose, duration, and species used in the experiment).

View Article and Find Full Text PDF

Maghemite nanoparticles ([Formula: see text] NPs) have a wide array of applications in various industries including biomedical field. There is an absence of legislation globally for the regulation of the production, use, and disposal of such NPs as they are eventually dumped into the environment where these NPs might affect the living systems. This study evaluates the effect of the [Formula: see text] NP-induced developmental toxicity in zebrafish embryos/larvae.

View Article and Find Full Text PDF

We investigated whether ferulic acid (FA), a nutraceutical could mitigate the arsenic (As) induced cardiotoxicity. Zebrafish larvae (60 and 72 h post-fertilization [hpf]) were used to study the effect of FA on As at different time points (24 and 48 h after exposure). The FA exposure was given as pre-treatment (60 hpf) and simultaneous treatment (72 hpf) to translate the results for As contaminated areas.

View Article and Find Full Text PDF

The advent of new technologies has paved the rise of various chemicals that are being employed in industrial as well as consumer products. This leads to the accumulation of these xenobiotic compounds in the environment where they pose a serious threat to both target and non-target species. miRNAs are one of the key epigenetic mechanisms that have been associated with toxicity by modulating the gene expression post-transcriptionally.

View Article and Find Full Text PDF

The role of epigenetics in development has garnered attention in recent years due to their ability to modulate the embryonic developmental gene expression in response to the environmental cues. The epigenetic mechanisms - DNA methylation, histone modification, and non-coding RNAs have a unique impact on vertebrate development. Zebrafish, a model vertebrate organism is being used widely in developmental studies due to their high fecundability and rapid organogenesis.

View Article and Find Full Text PDF

Repeated deposition of copper oxide nanoparticles (CuO-NPs) into aquatic systems makes them a global threat since the NPs accumulate in various organs of the fish particularly skeletal muscle. In the present study, adult zebrafish were exposed to different concentrations of CuO-NPs (1 and 3 mg/L) for a period of 30 days. The status of functional markers (acetylcholinesterase, creatine kinase-MB, and lactate dehydrogenase) and oxidative stress markers (oxidants and antioxidants) were analyzed.

View Article and Find Full Text PDF