In the continuity of a previous jet-cooled rovibrational study of trans and cis conformers of 2-furfural in the mid-infrared region (700-1750 cm-1) [Chawananon et al., Molecules 28 (10), 4165 (2023)], the present work investigates the far-infrared spectroscopy of 2-furfural using a long path absorption cell coupled to a high-resolution Fourier transform spectrometer and synchrotron radiation at the AILES beamline of the SOLEIL synchrotron. Guided by anharmonic calculations, vibrational energy levels and excited-state rotational constants are sufficiently predictive for a complete assignment of all fundamental and combination bands up to 700 cm-1, as well as the rovibrational analysis of 4 (1) low-frequency modes of trans-(cis-)2-furfural.
View Article and Find Full Text PDFThe ortho-isomer 2-furfural (2-FF), which is a primary atmospheric pollutant produced from biomass combustion, is also involved in oxidation processes leading to the formation of secondary organic aerosols. Its contribution to radiative forcing remains poorly understood. Thus, monitoring 2-FF directly in the atmosphere or in atmospheric simulation chambers to characterize its reactivity is merited.
View Article and Find Full Text PDFMethylfurans are methylated aromatic heterocyclic volatile organic compounds and primary or secondary pollutants in the atmosphere due to their capability to form secondary organic aerosols in presence of atmospheric oxidants. There is therefore a significant interest to monitor these molecules in the gas phase. High resolution spectroscopic studies of methylated furan compounds are generally limited to pure rotational spectroscopy in the vibrational ground state.
View Article and Find Full Text PDFMost G protein-coupled receptors that bind the hydrophobic ligands (lipid receptors and steroid receptors) belong to the most populated class A (rhodopsin-like) of these receptors. Typical examples of lipid receptors are: rhodopsin, cannabinoid (CB), sphingosine-1-phosphate (S1P) and lysophosphatidic (LPA) receptors. The hydrophobic ligands access the receptor binding site from the lipid bilayer not only because of their low solubility in water but also because of a large N-terminal domain plug preventing access to the orthosteric binding site from the extracellular milieu.
View Article and Find Full Text PDF