Publications by authors named "Satenig Guler"

Article Synopsis
  • Hematopoietic progenitor kinase 1 (HPK1) is an important target in immune oncology research because it regulates key signaling pathways in immune cells.
  • Genetic deletion of HPK1 in T cells enhances their response to activation, and HPK1 knockout mice show improved anti-tumor effects.
  • The study details the development of effective HPK1 inhibitors through structure-based drug design, achieving strong potency and increased IL-2 cytokine secretion, which could enhance anti-tumor immune responses.
View Article and Find Full Text PDF

Wee1 is a tyrosine kinase that is highly expressed in several cancer types. Wee1 inhibition can lead to suppression of tumor cell proliferation and sensitization of cells to the effects of DNA-damaging agents. AZD1775 is a nonselective Wee1 inhibitor for which myelosuppression has been observed as a dose-limiting toxicity.

View Article and Find Full Text PDF

The development of new antibiotics to treat infections caused by drug-resistant Gram-negative pathogens is of paramount importance as antibiotic resistance continues to increase worldwide. Here we describe a strategy for the rational design of diazabicyclooctane inhibitors of penicillin-binding proteins from Gram-negative bacteria to overcome multiple mechanisms of resistance, including β-lactamase enzymes, stringent response and outer membrane permeation. Diazabicyclooctane inhibitors retain activity in the presence of β-lactamases, the primary resistance mechanism associated with β-lactam therapy in Gram-negative bacteria.

View Article and Find Full Text PDF

Multidrug-resistant (MDR) bacterial infections are a serious threat to public health. Among the most alarming resistance trends is the rapid rise in the number and diversity of β-lactamases, enzymes that inactivate β-lactams, a class of antibiotics that has been a therapeutic mainstay for decades. Although several new β-lactamase inhibitors have been approved or are in clinical trials, their spectra of activity do not address MDR pathogens such as Acinetobacter baumannii.

View Article and Find Full Text PDF

Thymidylate kinase (TMK), an essential enzyme in bacterial DNA biosynthesis, is an attractive therapeutic target for the development of novel antibacterial agents, and we continue to explore TMK inhibitors with improved potency, protein binding, and pharmacokinetic potential. A structure-guided design approach was employed to exploit a previously unexplored region in Staphylococcus aureus TMK via novel interactions. These efforts produced compound 39, with 3 nM IC50 against S.

View Article and Find Full Text PDF

Thymidylate kinase (TMK) is an essential enzyme in bacterial DNA synthesis. The deoxythymidine monophosphate (dTMP) substrate binding pocket was targeted in a rational-design, structure-supported effort, yielding a unique series of antibacterial agents showing a novel, induced-fit binding mode. Lead optimization, aided by X-ray crystallography, led to picomolar inhibitors of both Streptococcus pneumoniae and Staphylococcus aureus TMK.

View Article and Find Full Text PDF

There is an urgent need for new antibacterials that pinpoint novel targets and thereby avoid existing resistance mechanisms. We have created novel synthetic antibacterials through structure-based drug design that specifically target bacterial thymidylate kinase (TMK), a nucleotide kinase essential in the DNA synthesis pathway. A high-resolution structure shows compound TK-666 binding partly in the thymidine monophosphate substrate site, but also forming new induced-fit interactions that give picomolar affinity.

View Article and Find Full Text PDF

Design, synthesis and structure-activity relationship of a series of biphenylsulfonamido-3-methylbutanoic acid based aggrecanase-1 inhibitors are described. In addition to robust aggrecanase-1 inhibition, these compounds also exhibit potent MMP-13 activity. In cell-based cartilage explants assay compound 48 produced 87% inhibition of proteoglycan degradation at 10 μg/mL.

View Article and Find Full Text PDF

Tpl2 (cot/MAP3K8) is an upstream kinase of MEK in the ERK pathway. It plays an important role in Tumor Necrosis Factor-alpha (TNF-alpha) production and signaling. We have discovered that 8-halo-4-(3-chloro-4-fluoro-phenylamino)-6-[(1H-[1,2,3]triazol-4-ylmethyl)-amino]-quinoline-3-carbonitriles (4) are potent inhibitors of this enzyme.

View Article and Find Full Text PDF

Tumor progression loci-2 (Tpl2) (Cot/MAP3K8) is a serine/threonine kinase in the MAP3K family directly upstream of MEK. Recent studies using Tpl2 knockout mice have indicated an important role for Tpl2 in the lipopolysaccharide (LPS) induced production of tumor necrosis factor alpha (TNF-alpha) and other proinflammatory cytokines involved in diseases such as rheumatoid arthritis. Initial 4-anilino-6-aminoquinoline-3-carbonitrile leads showed poor selectivity for Tpl2 over epidermal growth factor receptor (EGFR) kinase.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionfaud9fju1v1u0fgeld6kjobd1h6cm4hb): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once