Publications by authors named "Satchell S"

Diabetic kidney disease (DKD) is the leading cause of end stage kidney failure worldwide, of which cellular insulin resistance is a major driver. Here, we study key human kidney cell types implicated in DKD (podocytes, glomerular endothelial, mesangial and proximal tubular cells) in insulin sensitive and resistant conditions, and perform simultaneous transcriptomics and proteomics for integrated analysis. Our data is further compared with bulk- and single-cell transcriptomic kidney biopsy data from early- and advanced-stage DKD patient cohorts.

View Article and Find Full Text PDF

Adiponectin has vascular anti-inflammatory and protective effects. Although adiponectin protects against the development of albuminuria, historically, the focus has been on podocyte protection within the glomerular filtration barrier (GFB). The first barrier to albumin in the GFB is the endothelial glycocalyx (eGlx), a surface gel-like barrier covering glomerular endothelial cells (GEnCs).

View Article and Find Full Text PDF

Background: Diabetes mellitus is a chronic disease which is detrimental to cardiovascular health, often leading to secondary microvascular complications, with huge global health implications. Therapeutic interventions that can be applied to multiple vascular beds are urgently needed. Diabetic retinopathy (DR) and diabetic kidney disease (DKD) are characterised by early microvascular permeability changes which, if left untreated, lead to visual impairment and renal failure, respectively.

View Article and Find Full Text PDF
Article Synopsis
  • - The study investigates the mechanisms behind Shiga toxin-producing E. coli hemolytic uremic syndrome (STEC-HUS), a leading cause of acute kidney injury in children, revealing that the glomerular microvasculature is particularly vulnerable to damage from systemic Stx infection.
  • - Researchers engineered mice to express the Stx receptor in kidney cells and found that exposure led to reduction of a crucial growth factor (VEGF-A), causing more damage via complement pathway activation.
  • - The findings suggest that early intervention using a C5 inhibitor could be a promising treatment to mitigate the effects of STx-induced HUS, enhancing understanding of the disease's targeting of the kidneys.
View Article and Find Full Text PDF
Article Synopsis
  • Glomerular endothelial cell (GEnC) fenestrations are essential for maintaining the filtration barrier in kidneys, allowing for proper fluid movement.
  • The review discusses how these structures are created and regulated, highlighting their importance in both normal function and in various diseases.
  • Additionally, it explores potential research methods to better study fenestrations, referencing related cells like liver sinusoidal endothelial cells for comparative understanding.
View Article and Find Full Text PDF

The renin angiotensin aldosterone system is a key regulator of blood pressure. Aldosterone is the final effector of this pathway, acting predominantly via mineralocorticoid receptors. Aldosterone facilitates the conservation of sodium and, with it, water and acts as a powerful stimulus for potassium excretion.

View Article and Find Full Text PDF

The glomerular endothelial glycocalyx (GEnGlx) forms the first part of the glomerular filtration barrier. Previously, we showed that mineralocorticoid receptor (MR) activation caused GEnGlx damage and albuminuria. In this study, we investigated whether MR antagonism could limit albuminuria in diabetes and studied the site of action.

View Article and Find Full Text PDF
Article Synopsis
  • The endothelial glycocalyx (eGlx) is a vital layer on endothelial cells that helps maintain vascular health, and its damage is linked to various diseases.
  • This study used established techniques to visualize the eGlx in the microvasculature of reproductive tissues in five healthy dogs during elective neutering, focusing on uterine and testicular arteries.
  • The results showed that eGlx was successfully visualized in the arteries of two dogs, revealing specific depths, but highlighted the need for further research to improve methods for measuring eGlx health in clinical settings.
View Article and Find Full Text PDF

The endothelial glycocalyx (eGlx) lines the luminal surface of endothelial cells, maintaining vascular health. Glycocalyx damage is pathophysiologically important in many diseases across species however few studies have investigated its breakdown in naturally occurring disease in dogs. The aims of the study were to investigate eGlx damage in dogs with myxomatous mitral valve disease (MMVD) diagnosed on echocardiography, and dogs in a hypercoagulable state diagnosed using thromboelastography (TEG), by measuring serum hyaluronan concentrations.

View Article and Find Full Text PDF

Introduction: Minimal change disease (MCD) is considered a podocyte disorder triggered by unknown circulating factors. Here, we hypothesized that the endothelial cell (EC) is also involved in MCD.

Methods: We studied 45 children with idiopathic nephrotic syndrome (44 had steroid sensitive nephrotic syndrome [SSNS], and 12 had biopsy-proven MCD), 21 adults with MCD, and 38 healthy controls (30 children, 8 adults).

View Article and Find Full Text PDF

Background: Glomerular endothelial cell (GEnC) fenestrations are recognized as an essential component of the glomerular filtration barrier, yet little is known about how they are regulated and their role in disease.

Methods: We comprehensively characterized GEnC fenestral and functional renal filtration changes including measurement of glomerular and GFR in diabetic mice (BTBR ). We also examined and compared human samples.

View Article and Find Full Text PDF

Aims/hypothesis: Diabetic cardiomyopathy (DCM) is a serious and under-recognised complication of diabetes. The first sign is diastolic dysfunction, which progresses to heart failure. The pathophysiology of DCM is incompletely understood but microcirculatory changes are important.

View Article and Find Full Text PDF

Background: After kidney transplantation, donor-specific antibodies against human leukocyte antigen donor-specific antibodies (HLA-DSAs) drive antibody-mediated rejection (ABMR) and are associated with poor transplant outcomes. However, ABMR histology (ABMRh) is increasingly reported in kidney transplant recipients (KTRs) without HLA-DSAs, highlighting the emerging role of non-HLA antibodies (Abs).

Methods: W e designed a non-HLA Ab detection immunoassay (NHADIA) using HLA class I and II-deficient glomerular endothelial cells (CiGEnCHLA) that had been previously generated through CRISPR/Cas9-induced and gene disruption.

View Article and Find Full Text PDF

The socio-economic impact of diseases associated with cognitive impairment is increasing. According to the Alzheimer's Society there are over 850,000 people with dementia in the UK, costing the UK £26 billion in 2013. Therefore, research into treatment of those conditions is vital.

View Article and Find Full Text PDF

The impairment of the alternative complement pathway contributes to rare kidney diseases such as atypical hemolytic uremic syndrome (aHUS) and C3 glomerulopathy (C3G). We recently described an aHUS patient carrying an exceptional gain-of-function (GoF) mutation (S250C) in the classical complement pathway component C2 leading to the formation of hyperactive classical convertases. We now report the identification of the same mutation and another C2 GoF mutation R249C in two other patients with a glomerulopathy of uncertain etiology.

View Article and Find Full Text PDF

The glomerulus is the filtration unit of the kidney. Injury to any component of this specialised structure leads to impaired filtration and eventually fibrosis and chronic kidney disease. Current two and three dimensional (2D and 3D) models that attempt to recreate structure and interplay between glomerular cells are imperfect.

View Article and Find Full Text PDF

Focal segmental glomerulosclerosis (FSGS) and minimal change disease (MCD) are common forms of idiopathic nephrotic syndrome. The causes of these diseases are incompletely understood, but the response of patients to immunosuppressive therapies suggests that their pathogenesis is at least in part immune mediated. Preclinical and clinical research indicates that activation of the classical pathway of complement contributes to glomerular injury in FSGS.

View Article and Find Full Text PDF

Puumala orthohantavirus causes hemorrhagic fever with renal syndrome (HFRS) characterized by acute kidney injury (AKI), an abrupt decrease in renal function. Creatinine is routinely used to detect and quantify AKI; however, early AKI may not be reflected in increased creatinine levels. Therefore, kidney injury markers that can predict AKI are needed.

View Article and Find Full Text PDF
Article Synopsis
  • - Endothelial cells from various organs (brain, lung, liver, kidney) show unique characteristics that can be utilized for targeted nanomedicine, as they react differently to modified silica nanoparticles.
  • - The study found that the protein coronas from different nanoparticle types and serum (FBS vs. human serum) influenced how effectively these cells incorporated nanoparticles; specifically, uptake patterns varied depending on the type of silica used.
  • - Differences in nanoparticle uptake efficiency among organ-specific endothelial cells are likely due to variations in receptor expression and activity, highlighting the importance of understanding these phenotypic differences for improving nanomedicine applications.
View Article and Find Full Text PDF

Albuminuria is an independent risk factor for the progression to end-stage kidney failure, cardiovascular morbidity, and premature death. As such, discovering signaling pathways that modulate albuminuria is desirable. Here, we studied the transcriptomes of podocytes, key cells in the prevention of albuminuria, under diabetic conditions.

View Article and Find Full Text PDF

The endothelial glycocalyx is a key component of the glomerular filtration barrier. We have shown that matrix metalloproteinase (MMP)-mediated syndecan 4 shedding is a mechanism of glomerular endothelial glycocalyx damage in vitro, resulting in increased albumin permeability. Here we sought to determine whether this mechanism is important in early diabetic kidney disease, by studying streptozotocin-induced type 1 diabetes in DBA2/J mice.

View Article and Find Full Text PDF

The endothelial glycocalyx is a vital regulator of vascular permeability. Damage to this delicate layer can result in increased protein and water transit. The clinical importance of albuminuria as a predictor of kidney disease progression and vascular disease has driven research in this area.

View Article and Find Full Text PDF