Publications by authors named "Sasser A"

Known as "forever chemicals", per- and polyfluoroalkyl substances (PFAS) are synthetic compounds used in consumer goods but pose significant public health concerns, including disruption of the thyroid system. As thyroid hormones (THs) are required for normal brain development, PFAS may also be developmental neurotoxicants. However, this is not well understood.

View Article and Find Full Text PDF

Evaluating the neurodevelopmental effects of thyroid-disrupting chemicals is challenging. Although some standardized developmental and reproductive toxicity studies recommend serum thyroxine (T4) measures in developing rats, extrapolating between a serum T4 reduction and neurodevelopmental outcomes is not straightforward. Previously, we showed that the blood-brain and blood-cerebrospinal fluid barriers may be affected by developmental hypothyroidism in newborn rats.

View Article and Find Full Text PDF

Background: HexaBody®-CD38 (GEN3014) is a hexamerization-enhanced human IgG1 that binds CD38 with high affinity. The E430G mutation in its Fc domain facilitates the natural process of antibody hexamer formation upon binding to the cell surface, resulting in increased binding of C1q and potentiated complement-dependent cytotoxicity (CDC).

Methods: Co-crystallization studies were performed to identify the binding interface of HexaBody-CD38 and CD38.

View Article and Find Full Text PDF

Thyroid hormone (TH) action controls brain development in a spatiotemporal manner. Previously, we demonstrated that perinatal hypothyroidism led to formation of a periventricular heterotopia in developing rats. This heterotopia occurs in the posterior telencephalon, and its formation was preceded by loss of radial glia cell polarity.

View Article and Find Full Text PDF

CD3 bispecific antibodies (bsAbs) show great promise as anticancer therapeutics. Here, we show in-depth mechanistic studies of a CD3 bsAb in solid cancer, using DuoBody-CD3x5T4. Cross-linking T cells with tumor cells expressing the oncofetal antigen 5T4 was required to induce cytotoxicity.

View Article and Find Full Text PDF

Laws play an important role in emergency response capacity. During the COVID-19 outbreak, experts have noted both a lack of law where it is needed and a problematic use of laws that exist. To address those challenges, policymakers revising public health emergency laws can examine how existing laws were used during the COVID-19 response to address problems that arose during their application.

View Article and Find Full Text PDF

There is compelling evidence that developmental exposure to toxic metals increases risk for obesity and obesity-related morbidity including cardiovascular disease and type 2 diabetes. To explore the hypothesis that developmental Cd exposure increases risk of obesity later in life, male, and female CD-1 mice were maternally exposed to 500 ppb CdCl2 in drinking water during a human gestational equivalent period (gestational day 0-postnatal day 10 [GD0-PND10]). Hallmark indicators of metabolic disruption, hepatic steatosis, and metabolic syndrome were evaluated prior to birth through adulthood.

View Article and Find Full Text PDF

Background: Cancer associated copy number variation (CNV) events provide important information for identifying patient subgroups and suggesting treatment strategies. Technical and logistical issues, however, make it challenging to accurately detect abnormal copy number events in a cost-effective manner in clinical studies.

Results: Here we present CNV Radar, a software tool that utilizes next-generation sequencing read depth information and variant allele frequency patterns, to infer the true copy number status of genes and genomic regions from whole exome sequencing data.

View Article and Find Full Text PDF

Daratumumab is a CD38-targeted human monoclonal antibody with direct anti-myeloma cell mechanisms of action. Flow cytometry in relapsed and/or refractory multiple myeloma (RRMM) patients treated with daratumumab revealed cytotoxic T-cell expansion and reduction of immune-suppressive populations, suggesting immune modulation as an additional mechanism of action. Here, we performed an in-depth analysis of the effects of daratumumab on immune-cell subpopulations using high-dimensional mass cytometry.

View Article and Find Full Text PDF

Daratumumab, a CD38 human monoclonal antibody, demonstrated significant clinical activity in combination with bortezomib and dexamethasone bortezomib and dexamethasone alone in the primary analysis of CASTOR, a phase 3 study in relapsed and/or refractory multiple myeloma. A analysis based on treatment history and longer follow up is presented. After 19.

View Article and Find Full Text PDF

In the POLLUX study, daratumumab plus lenalidomide/dexamethasone significantly reduced risk of progression/death lenalidomide/dexamethasone alone in relapsed/refractory multiple myeloma. We provide one additional year of follow up and include the effect on minimal residual disease and in clinically relevant subgroups. After 25.

View Article and Find Full Text PDF

Response criteria in acute myeloid leukemia (AML) has recently been re-established, with morphologic examination utilized to determine whether patients have achieved complete remission (CR). Approximately half of the adult patients who entered CR will relapse within 12 months due to the outgrowth of residual AML cells in the bone marrow. The quantitation of these remaining leukemia cells, known as minimal or measurable residual disease (MRD), can be a robust biomarker for the prediction of these relapses.

View Article and Find Full Text PDF

Background: Daratumumab, a human CD38 monoclonal antibody that has direct on-tumor and immunomodulatory mechanisms of action, demonstrated clinical benefit as monotherapy or in combination with established regimens in patients with multiple myeloma with one or more prior lines of therapy.

Case Presentation: A male patient, who was 70 years of age at the time of diagnosis of multiple myeloma in 2011, relapsed after five lines of therapy, including autologous stem cell transplantation. The patient's disease, which was considered high risk with a deletion of chromosome 17p, advanced quickly and was triple refractory 2 years after diagnosis leaving few treatment options.

View Article and Find Full Text PDF

Daratumumab, a human CD38 imunoglobulin G 1κ monoclonal antibody, has demonstrated clinical activity and a manageable safety profile in monotherapy and combination therapy clinical trials in relapsed and/or refractory multiple myeloma. CD38 is expressed at high levels on myeloma cells and, to a lesser extent, on immune effector cells, including natural killer (NK) cells, which are important for daratumumab-mediated antibody-dependent cellular cytotoxicity (ADCC). Here, the pharmacodynamic effects of daratumumab monotherapy on NK cells, and the effect of NK cell dynamics on daratumumab efficacy and safety, were assessed.

View Article and Find Full Text PDF

We have developed an automated assay to enumerate and characterize circulating multiple myeloma cells (CMMC) from peripheral blood of patients with plasma cell disorders. CMMC show expression of genes characteristic of myeloma and fluorescence in situ hybridisation results on CMMC correlated well with bone marrow results. We enumerated CMMC from over 1000 patient samples including separate cohorts of newly diagnosed multiple myeloma and high/intermediate risk smouldering multiple myeloma (SMM) with clinical follow-up data.

View Article and Find Full Text PDF
Article Synopsis
  • - Daratumumab significantly lowers CD38 expression on multiple myeloma cells within hours, and this effect happens regardless of the treatment's depth or duration as seen in the GEN501 and GEN503 studies.
  • - The reduction in CD38 levels was also noted in nontumor immune cells like natural killer cells and T cells, suggesting a broader impact of the treatment beyond just tumor cells.
  • - Mechanistically, the decrease in CD38 expression is linked to a process called trogocytosis, where daratumumab-CD38 complexes are transferred to other immune cells, which may contribute to the drug's effectiveness in treating multiple myeloma.
View Article and Find Full Text PDF

Treatment of myeloma has benefited from the introduction of more effective and better tolerated agents, improvements in supportive care, better understanding of disease biology, revision of diagnostic criteria, and new sensitive and specific tools for disease prognostication and management. Assessment of minimal residual disease (MRD) in response to therapy is one of these tools, as longer progression-free survival (PFS) is seen consistently among patients who have achieved MRD negativity. Current therapies lead to unprecedented frequency and depth of response, and next-generation flow and sequencing methods to measure MRD in bone marrow are in use and being developed with sensitivities in the range of 10 to 10 cells.

View Article and Find Full Text PDF

Daratumumab, a human CD38 immunoglobulin G1 kappa (IgG1κ) monoclonal antibody, has activity as monotherapy in multiple myeloma (MM). This phase 1/2 study investigated daratumumab plus lenalidomide/dexamethasone in refractory and relapsed/refractory MM. Part 1 (dose escalation) evaluated 4 daratumumab doses plus lenalidomide (25 mg/day orally on days 1-21 of each cycle) and dexamethasone (40 mg/week).

View Article and Find Full Text PDF

The anti-CD38 monoclonal antibody daratumumab is well tolerated and has high single agent activity in heavily pretreated relapsed and refractory multiple myeloma (MM). However, not all patients respond, and many patients eventually develop progressive disease to daratumumab monotherapy. We therefore examined whether pretreatment expression levels of CD38 and complement-inhibitory proteins (CIPs) are associated with response and whether changes in expression of these proteins contribute to development of resistance.

View Article and Find Full Text PDF

Daratumumab targets CD38-expressing myeloma cells through a variety of immune-mediated mechanisms (complement-dependent cytotoxicity, antibody-dependent cell-mediated cytotoxicity, and antibody-dependent cellular phagocytosis) and direct apoptosis with crosslinking. These mechanisms may also target nonplasma cells that express CD38, which prompted evaluation of daratumumab's effects on CD38-positive immune subpopulations. Peripheral blood (PB) and bone marrow (BM) from patients with relapsed/refractory myeloma from 2 daratumumab monotherapy studies were analyzed before and during therapy and at relapse.

View Article and Find Full Text PDF

The efficacy and favorable safety profile of daratumumab monotherapy in multiple myeloma (MM) was previously reported. Here, we present an updated pooled analysis of 148 patients treated with daratumumab 16 mg/kg. Data were combined from part 2 of a first-in-human phase 1/2 study of patients who relapsed after or were refractory to ≥2 prior therapies and a phase 2 study of patients previously treated with ≥3 prior lines of therapy (including a proteasome inhibitor [PI] and an immunomodulatory drug [IMiD]) or were double refractory.

View Article and Find Full Text PDF

Background: Monoclonal antibodies are promising anti-myeloma treatments. As immunoglobulins, monoclonal antibodies have the potential to be identified by serum protein electrophoresis (SPE) and immunofixation electrophoresis (IFE). Therapeutic antibody interference with standard clinical SPE and IFE can confound the use of these tests for response assessment in clinical trials and disease monitoring.

View Article and Find Full Text PDF

Introduction: Interleukin-6 (IL-6) is an important growth factor for estrogen receptor-α (ERα)-positive breast cancer, and elevated serum IL-6 is associated with poor prognosis.

Methods: The role of the phosphorylated signal transducer and activator of transcription 3 pathway was investigated in ERα-positive breast cancer. A panel of cell lines was treated with exogenous IL-6.

View Article and Find Full Text PDF