Publications by authors named "Sasmita Rath"

Accumulation of heavy metals in zooplanktons is used as an essential tool for the evaluation of health of an ecosystem. Such data are used to set further monitoring strategies especially in (coastal) water bodies. In the present study, seasonal bioaccumulation of heavy metals such as Cu, Zn, Pb, Cd and Hg, organic loads such as nitrite and phosphate, contents loads and physicochemical parameters in Haripur creek along the Bay of Bengal in east coast of India is measured in zooplanktons.

View Article and Find Full Text PDF

Rapidly expanding nanoparticle industries are predicted to have turnover of ∼$173.95 billion by 2025, indicating an urgency to study their comprehensive toxicological impact(s). Toxic effects of Graphene Oxide (GO) on oxidative stress physiology especially at mitochondrial level and redox modulation in fish in general and in climbing perch Anabas testudineus is absent.

View Article and Find Full Text PDF

Heart valve replacement options remain exceedingly limited for pediatric patients because they cannot accommodate somatic growth. To overcome this shortcoming, heart valve tissue engineering using human bone marrow stem cells (HBMSCs) has been considered a potential solution to the treatment of critical congenital valvular defects. The mechanical environments during culture are key regulators of progenitor cell fate.

View Article and Find Full Text PDF

Engineered valvular tissues are cultured dynamically, and involve specimen movement. We previously demonstrated that oscillatory shear stresses (OSS) under combined steady flow and specimen cyclic flexure (flex-flow) promote tissue formation. However, localized efficiency of specimen mass transport is also important in the context of cell viability within the growing tissues.

View Article and Find Full Text PDF

For treatment of critical heart valve diseases, prosthetic valves perform fairly well in most adults; however, for pediatric patients, there is the added requirement that the replacement valve grows with the child, thus extremely limiting current treatment options. Tissue engineered heart valves (TEHV), such as those derived from autologous bone marrow stem cells (BMSCs), have the potential to recapitulate native valve architecture and accommodate somatic growth. However, a fundamental pre-cursor in promoting directed integration with native tissues rather than random, uncontrolled growth requires an understanding of BMSC mechanobiological responses to valve-relevant mechanical environments.

View Article and Find Full Text PDF

Fluid-induced oscillatory shear stress (OSS) and nicotine are known antagonists in cardiovascular disease. However, from a regenerative medicine standpoint, we hypothesized that these parameters may support the cell differentiation of bone marrow mesenchymal stem cells (BMMSCs) for engineering heart valves. In this study, OSS and nicotine (10-6M) were applied individually to BMMSCs in monolayer culture.

View Article and Find Full Text PDF

Tissue engineered heart valves (TEHVs) may provide a permanent solution to congenital heart valve disease by permitting somatic valve growth in the pediatric patient. However, to date, TEHV studies have focused primarily on collagen, the dominant component of valve extracellular matrix (ECM). Temporal decreases in other ECM components, such as the glycosaminoglycans (GAGs), generally decrease as cells produce more collagen under mechanically loaded states; nevertheless, GAGs represent a key component of the valve ECM, providing structural stability and hydration to the leaflets.

View Article and Find Full Text PDF

A major drawback of mechanical and prosthetic heart valves is their inability to permit somatic growth. By contrast, tissue-engineered pulmonary valves potentially have the capacity to remodel and integrate with the patient. For this purpose, adult stem cells may be suitable.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionsj6anjk8lk5pv6khmursv7ull1qjdplm): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once