Publications by authors named "Saskia Rathjen"

A stable (amino)plumbylene-substituted phosphaketene 3 was synthesized by the successive reactions of PbCl with two anionic reagents (lithium amidophosphine and NaPCO). Of particular interest, the thermal evolution of 3, at 80 °C, leads to the transient formation of corresponding amino- and phosphanylidene-phosphaketenes (6 and 7), via a reductive elimination at the Pb center forming new N-P and P-P bonds. Further evolution of 6 gives a new cyclic (amino)phosphanylidene phosphorane 4, which shows a unique reactivity as a phosphinidene.

View Article and Find Full Text PDF

The Si-H···Se contact in 1-mesitylselanyl-8-(dimethylsilyl)naphthalene (), which exhibits the spatial arrangement of a δ-agostic interaction from geometric considerations, was investigated. Is this just enforced by close 1,8-proximity or is this a favorable interaction? Charge density studies are best suited to investigate the exact origin of the interaction and to quantify the properties. Hence, they are most elucidating.

View Article and Find Full Text PDF

Cyclic silylated chalconium borates 13[B(C F ) ] and 14[B(C F ) ] with peri-acenaphthyl and peri-naphthyl skeletons were synthesized from unsymmetrically substituted silanes 3, 4, 6, 7, 9 and 10 using the standard Corey protocol (Chalcogen Ch=O, S, Se, Te). The configuration at the chalcogen atom is trigonal pyramidal for Ch=S, Se, Te, leading to the formation of cis- and trans-isomers in the case of phenylmethylsilyl cations. With the bulkier tert-butyl group at silicon, the configuration at the chalcogen atoms is predetermined to give almost exclusively the trans-configurated cyclic silylchalconium ions.

View Article and Find Full Text PDF

A new NMR-based Lewis acidity scale is suggested and its application is demonstrated for a family of silyl Lewis acids. The reaction of p-fluorobenzonitrile (FBN) with silyl cations that are internally stabilized by interaction with a remote chalcogenyl or halogen donor yields silylated nitrilium ions with the silicon atom in a trigonal bipyramidal coordination environment. The F NMR chemical shifts and the J(CF) coupling constants of these nitrilium ions vary in a predictable manner with the donor capability of the stabilizing group.

View Article and Find Full Text PDF

The synthesis of two series of silylated chalconium borates, 9 and 10, which are based on the peri-naphthyl and peri-acenaphthyl framework, is reported (chalcogen (Ch): O, S, Se, Te). NMR investigations of the selenium- and tellurium-containing precursor silanes 3 d-f and 8 d, f revealed a significant through-space J-coupling between the chalcogen nuclei and the Me SiH group. Experimental and computational results typify the synthesized cations 9 and 10 as chalconium ions.

View Article and Find Full Text PDF

The installation of structural complex oligosilanes from linear starting materials by Lewis acid induced skeletal rearrangement reactions was studied under stable ion conditions. The produced cations were fully characterized by multinuclear NMR spectroscopy at low temperature, and the reaction course was studied by substitution experiments. The results of density functional theory calculations indicate the decisive role of attractive dispersion forces between neighboring trimethylsilyl groups for product formation in these rearrangement reactions.

View Article and Find Full Text PDF