Organic bioelectronics have a huge potential to generate interfaces and devices for the study of brain functions and for the therapy of brain pathologies. In this context, increasing efforts are needed to develop technologies for monitoring and stimulation of nonexcitable brain cells, called astrocytes. Astroglial calcium signaling plays, indeed, a pivotal role in the physiology and pathophysiology of the brain.
View Article and Find Full Text PDFWe report the design, synthesis and structure-property investigation of a new perylene diimide material (PDI-Lys) bearing lysine end substituents. Water processed films of PDI-Lys were prepared and their self-assembly, morphology and electrical properties in both inert and air environments were theoretically and experimentally investigated. With the aim of evaluating the potential of PDI-Lys as a biocompatible and functional neural interface for organic bioelectronic applications, its electrochemical impedance as well as the adhesion and viability properties of primary neurons on the PDI-Lys films were studied.
View Article and Find Full Text PDFLysinated molecular organic semiconductors are introduced as valuable multifunctional platforms for neural cells growth and interfacing. Cast films of quaterthiophene (T4) semiconductor covalently modified with lysine-end moieties (T4Lys) are fabricated and their stability, morphology, optical/electrical, and biocompatibility properties are characterized. T4Lys films exhibit fluorescence and electronic transport as generally observed for unsubstituted oligothiophenes combined to humidity-activated ionic conduction promoted by the charged lysine-end moieties.
View Article and Find Full Text PDF