Non-spore forming probiotic bacteria tend to diminish their activity under adverse conditions. This leads to the difficulty of delivery in animal body system as well as the feed pelleting process. The present work proposes the microcapsule networks based on polymer matrices and charges under ionic crosslink to encapsulate probiotic for an extensive stability in adverse conditions.
View Article and Find Full Text PDFObjective: Microencapsulation technologies have been developed and successfully applied to protect the probiotic bacterial cells damaged by environmental exposure. This study aimed to investigate the effects of microencapsulation of Lactobacillus plantarum MB001 on the growth performance, ileal nutrient digestibility, jejunal histomorphology and cecal microbiome of broiler chickens in a tropical climate.
Methods: A total of 288 one-day-old female broilers (Ross 308) were randomly allocated into 4 groups (6 replicates of 12 birds).