Saliva is a non-invasive, easily accessible tissue, which is regularly collected in large epidemiological studies to examine genetic questions. Recently, it is becoming more common to use saliva to assess DNA methylation. However, DNA extracted from saliva is a mixture of both bacterial and human DNA derived from epithelial and immune cells in the mouth.
View Article and Find Full Text PDFPurpose: To develop a comprehensive genetic test for female and male infertility in support of medical decisions during assisted reproductive technology (ART) protocols.
Methods: We developed a next-generation sequencing (NGS) gene panel consisting of 87 genes including promoters, 5' and 3' untranslated regions, exons, and selected introns. In addition, sex chromosome aneuploidies and Y chromosome microdeletions were analyzed concomitantly using the same panel.
Appl Clin Genet
December 2015
Preterm birth (PTB; <37 weeks of gestation) is a complex disorder, whose etiology is influenced by a variety of factors. A greater understanding of the biological mechanisms that contribute to PTB will facilitate identification of those at increased risk and may inform new treatments. To accomplish this, it is vital to elucidate the heritability patterns of this condition as well as the environment and lifestyle factors that increase risk for PTB.
View Article and Find Full Text PDFAfrican Americans are at increased risk for spontaneous preterm birth (PTB). Though PTB is heritable, genetic studies have not identified variants that account for its intergenerational risk, prompting the hypothesis that epigenetic factors may also contribute. The objective of this study was to evaluate DNA methylation from maternal leukocytes to identify patterns specific to PTB and its intergenerational risk.
View Article and Find Full Text PDFObjective: Autism spectrum disorder (ASD) is associated with preterm birth (PTB), although the reason underlying this relationship is still unclear. Our objective was to examine DNA methylation patterns of 4 ASD candidate genes in human fetal membranes from spontaneous PTB and uncomplicated term birth.
Study Design: A literature search for genes that have been implicated in ASD yielded 14 candidate genes (OXTR, SHANK3, BCL2, RORA, EN2, RELN, MECP2, AUTS2, NLGN3, NRXN1, SLC6A4, UBE3A, GABA, AFF2) that were epigenetically modified in relation to ASD.
The epigenetic patterns established during development may influence gene expression over a lifetime and increase susceptibility to chronic disease. Being born preterm (<37 weeks of gestation) is associated with increased risk mortality and morbidity from birth until adulthood. This brief review explores the potential role of DNA methylation in preterm birth (PTB) and its possible long-term consequences and provides an overview of the physiological processes central to PTB and recent DNA methylation studies of PTB.
View Article and Find Full Text PDFSpontaneous preterm birth (PTB, <37 weeks gestation) is a major public health concern, and children born preterm have a higher risk of morbidity and mortality throughout their lives. Recent studies suggest that fetal DNA methylation of several genes varies across a range of gestational ages (GA), but it is not yet clear if fetal epigenetic changes associate with PTB. The objective of this study is to interrogate methylation patterns across the genome in fetal leukocyte DNA from African Americans with early PTB (24(1/7)-34(0/7) weeks; N = 22) or term births (39(0/7)-40(6/7)weeks; N = 28) and to evaluate the association of each CpG site with PTB and GA.
View Article and Find Full Text PDF