Force feedback could be valuable in adapting walking to diverse terrains, but the effects of changes in substrate inclination on discharges of sensory receptors that encode forces have rarely been examined. In insects, force feedback is provided by campaniform sensilla, mechanoreceptors that monitor forces as cuticular strains. We neurographically recorded responses of stick insect tibial campaniform sensilla to "naturalistic" forces (joint torques) that occur at the hind leg femur-tibia (FT) joint in uphill, downhill, and level walking.
View Article and Find Full Text PDFAnimals utilize a number of neuronal systems to produce locomotion. One type of sensory organ that contributes in insects is the campaniform sensillum (CS) that measures the load on their legs. Groups of the receptors are found on high stress regions of the leg exoskeleton and they have significant effects in adapting walking behavior.
View Article and Find Full Text PDFIn control of walking, sensory signals of decreasing forces are used to regulate leg lifting in initiation of swing and to detect loss of substrate grip (leg slipping). We used extracellular recordings in two insect species to characterize and model responses to force decrements of tibial campaniform sensilla, receptors that detect forces as cuticular strains. Discharges to decreasing forces did not occur upon direct stimulation of the sites of mechanotransduction (cuticular caps) but were readily elicited by bending forces applied to the leg.
View Article and Find Full Text PDFControl of forces is essential in both animals and walking machines. Insects measure forces as strains in their exoskeletons via campaniform sensilla (CS). Deformations of cuticular caps embedded in the exoskeleton excite afferents that project to the central nervous system.
View Article and Find Full Text PDFControl of adaptive walking requires the integration of sensory signals of muscle force and load. We have studied how mechanoreceptors (tibial campaniform sensilla) encode "naturalistic" stimuli derived from joint torques of stick insects walking on a horizontal substrate. Previous studies showed that forces applied to the legs using the mean torque profiles of a proximal joint were highly effective in eliciting motor activities.
View Article and Find Full Text PDFArthropod Struct Dev
September 2020
Posture and walking require support of the body weight, which is thought to be detected by sensory receptors in the legs. Specificity in sensory encoding occurs through the numerical distribution, size and response range of sense organs. We have studied campaniform sensilla, receptors that detect forces as strains in the insect exoskeleton.
View Article and Find Full Text PDFThe goal of this observational study was to develop effective approaches to introduce first year medical students to gross anatomy/embryology in a compressed time frame. Pedagogical reorganization of anatomy instruction in the regions of Lower Extremity and Head and Neck was based upon core clinical conditions taught in second-year and USMLE Step 1 board review courses. These conditions were not presented as clinical problems, as many students had limited prior training in medical terminology, but focused upon clinical symptoms, allowing for direct correlation of structure and function.
View Article and Find Full Text PDFJ Comp Physiol A Neuroethol Sens Neural Behav Physiol
April 2019
Force feedback from Campaniform sensilla (CS) on insect limbs helps to adapt motor outputs to environmental conditions, but we are only beginning to reveal the neural control mechanisms that mediate these influences. We studied CS groups that affect control of the thoraco-coxal joint in the stick insect Carausius morosus by applying horizontal and vertical forces to the leg stump. Motor effects of ablation of CS groups were evaluated by recording extracellularly from protractor (ProCx) and retractor (RetCx) nerves.
View Article and Find Full Text PDFMany sensory systems are tuned to specific parameters of behaviors and have effects that are task-specific. We have studied how force feedback contributes to activation of synergist muscles in serially homologous legs of stick insects. Forces were applied using conventional half-sine or ramp and hold functions.
View Article and Find Full Text PDFSense organs that monitor forces in legs can contribute to activation of muscles as synergist groups. Previous studies in cockroaches and stick insects showed that campaniform sensilla, receptors that encode forces via exoskeletal strains, enhance muscle synergies in substrate grip. However synergist activation was mediated by different groups of receptors in cockroaches (trochanteral sensilla) and stick insects (femoral sensilla).
View Article and Find Full Text PDFIn insects, the coordinated motor output required for walking is based on the interaction between local pattern-generating networks providing basic rhythmicity and leg sensory signals, which modulate this output on a cycle-to-cycle basis. How this interplay changes speed-dependently and thereby gives rise to the different coordination patterns observed at different speeds is not sufficiently understood. Here, we used amputation to reduce sensory signals in single legs and decouple them mechanically during walking in Drosophila.
View Article and Find Full Text PDFThe nervous system solves complex biomechanical problems by activating muscles in modular, synergist groups. We have studied how force feedback in substrate grip is integrated with effects of sense organs that monitor support and propulsion in insects. Campaniform sensilla are mechanoreceptors that encode forces as cuticular strains.
View Article and Find Full Text PDFArthropod Struct Dev
September 2014
The mechanics of substrate adhesion has recently been intensively studied in insects but less is known about the sensorimotor control of substrate engagement. We characterized the responses and motor effects of tarsal campaniform sensilla in stick insects to understand how sensory signals of force could contribute to substrate grip. The tarsi consist of a chain of segments linked by highly flexible articulations.
View Article and Find Full Text PDFThe Publisher regrets that this article is an accidental duplication of an article that has already been published, http://dx.doi.org/10.
View Article and Find Full Text PDFIn many systems, loads are detected as the resistance to muscle contractions. We studied responses to loads and muscle forces in stick insect tibial campaniform sensilla, including a subgroup of receptors (Group 6B) with unusual round cuticular caps in oval-shaped collars. Loads were applied in different directions and muscle contractions were emulated by applying forces to the tibial flexor muscle tendon (apodeme).
View Article and Find Full Text PDFThe regulation of forces is integral to motor control. However, it is unclear how information from sense organs that detect forces at individual muscles or joints is incorporated into a frame of reference for motor control. Campaniform sensilla are receptors that monitor forces by cuticular strains.
View Article and Find Full Text PDFJ Comp Physiol A Neuroethol Sens Neural Behav Physiol
August 2011
Detection of force increases and decreases is important in motor control. Experiments were performed to characterize the structure and responses of tibial campaniform sensilla, receptors that encode forces through cuticular strains, in the middle leg of the stick insect (Carausius morosus). The sensilla consist of distinct subgroups.
View Article and Find Full Text PDFJ Comp Physiol A Neuroethol Sens Neural Behav Physiol
June 2010
Sensory signals of contact and engagement with the substrate are important in the control and adaptation of posture and locomotion. We characterized responses of campaniform sensilla, receptors that encode forces as cuticular strains, in the tarsi (feet) of cockroaches using neurophysiological techniques and digital imaging. A campaniform sensillum on the fourth tarsal segment was readily identified by its large action potential in nerve recordings.
View Article and Find Full Text PDFWalking is adaptable because the timing of movements of individual legs can be varied while maintaining leg coordination. Recent work in stick insects shows that leg coordination set by interactions of pattern generating circuits can be overridden by sensory feedback.
View Article and Find Full Text PDFThe transfer of load from one leg to another is an essential component in walking, but sense organs that signal this process have rarely been identified. We used high-speed digital imaging and neurophysiological recordings to characterize activities of tibial campaniform sensilla, receptors that detect forces via cuticular strains, in the middle legs of cockroaches during walking. Previous studies demonstrated that the distal tibial sensilla discharge when body load is suddenly decreased in freely standing animals.
View Article and Find Full Text PDFThe ability to initiate movements can be impaired in some brain injuries even though motor actions proceed normally once they are begun. The effects of venom that wasps use in preying upon cockroaches could provide insights into this problem.
View Article and Find Full Text PDFAll animals generate progressively larger forces as they increase in size and mass. Their abilities to detect these forces must be similarly adjusted. In insects, campaniform sensilla monitor strains in the exoskeleton and provide information about forces acting upon the legs.
View Article and Find Full Text PDFHumans and many other animals can readily walk forward or backward. In insects, the nervous system changes the effects of sense organs that signal forces on a leg when the direction of walking is reversed.
View Article and Find Full Text PDFJ Comp Physiol A Neuroethol Sens Neural Behav Physiol
August 2007
Decreases in load are important cues in the control of posture and walking. We recorded activities of the tibial campaniform sensilla, receptors that monitor forces as strains in the exoskeleton, in the middle legs of freely moving cockroaches. Small magnets were attached to the thorax and body load was changed by applying currents to a coil below the substrate.
View Article and Find Full Text PDFJ Comp Physiol A Neuroethol Sens Neural Behav Physiol
March 2006
We studied the mechanisms underlying support of body load in posture and walking in serially homologous legs of cockroaches. Activities of the trochanteral extensor muscle in the front or middle legs were recorded neurographically while animals were videotaped. Body load was increased via magnets attached to the thorax and varied through a coil below the substrate.
View Article and Find Full Text PDF