Histone H3 monoaminylations at Gln5 represent an important family of epigenetic marks in brain that have critical roles in permissive gene expression. We previously demonstrated that serotonylation and dopaminylation of Gln5 of histone H3 (H3Q5ser and H3Q5dop, respectively) are catalysed by transglutaminase 2 (TG2), and alter both local and global chromatin states. Here we found that TG2 additionally functions as an eraser and exchanger of H3 monoaminylations, including H3Q5 histaminylation (H3Q5his), which displays diurnally rhythmic expression in brain and contributes to circadian gene expression and behaviour.
View Article and Find Full Text PDFStress can have profound consequences on mental health. While much is known about the neural circuits supporting associative memories of stressful events, our understanding of the circuits underlying the non-associative impacts of stress, such as heightened stress sensitivity and anxiety-related behavior, is limited. Here, we demonstrate that the ventral hippocampus (vHC) and basolateral amygdala (BLA) support distinct non-associative behavioral changes following stress.
View Article and Find Full Text PDFMood disorders are an enigmatic class of debilitating illnesses that affect millions of individuals worldwide. While chronic stress clearly increases incidence levels of mood disorders, including major depressive disorder (MDD), stress-mediated disruptions in brain function that precipitate these illnesses remain largely elusive. Serotonin-associated antidepressants (ADs) remain the first line of therapy for many with depressive symptoms, yet low remission rates and delays between treatment and symptomatic alleviation have prompted skepticism regarding direct roles for serotonin in the precipitation and treatment of affective disorders.
View Article and Find Full Text PDFBackground: Major depressive disorder (MDD), along with related mood disorders, is a debilitating illness that affects millions of individuals worldwide. While chronic stress increases incidence levels of mood disorders, stress-mediated disruptions in brain function that precipitate these illnesses remain elusive. Serotonin-associated antidepressants (ADs) remain the first line of therapy for many with depressive symptoms, yet low remission rates and delays between treatment and symptomatic alleviation have prompted skepticism regarding precise roles for serotonin in the precipitation of mood disorders.
View Article and Find Full Text PDFHyperexcitability in the orbitofrontal cortex (OFC) is a key clinical feature of anhedonic domains of Major Depressive Disorder (MDD). However, the cellular and molecular substrates underlying this dysfunction remain unknown. Here, cell-population-specific chromatin accessibility profiling in human OFC unexpectedly mapped genetic risk for MDD exclusively to non-neuronal cells, and transcriptomic analyses revealed significant glial dysregulation in this region.
View Article and Find Full Text PDFBackground: Severe stress can produce multiple persistent changes in defensive behavior relevant to psychiatric illness. While much is known about the circuits supporting stress-induced associative fear, how stress-induced circuit plasticity supports non-associative changes in defensive behavior remains unclear.
Methods: Mice were exposed to an acute severe stressor, and subsequently, both associative and non-associative defensive behavioral responses were assessed.
Enduring patterns of epigenomic and transcriptional plasticity within the mesolimbic dopamine system contribute importantly to persistent behavioral adaptations that characterize substance use disorders (SUD). While drug addiction has long been thought of as a disorder of dopamine (DA) neurotransmission, therapeutic interventions targeting receptor mediated DA-signaling have not yet resulted in efficacious treatments. Our laboratory recently identified a non-canonical, neurotransmission-independent signaling moiety for DA in brain, termed dopaminylation, whereby DA itself acts as a donor source for the establishment of post-translational modifications (PTM) on substrate proteins (e.
View Article and Find Full Text PDFWith an incidence of ~1 in 800 births, Down syndrome (DS) is the most common chromosomal condition linked to intellectual disability worldwide. While the genetic basis of DS has been identified as a triplication of chromosome 21 (HSA21), the genes encoded from HSA21 that directly contribute to cognitive deficits remain incompletely understood. Here, we found that the HSA21-encoded chromatin effector, BRWD1, was upregulated in neurons derived from iPS cells from an individual with Down syndrome and brain of trisomic mice.
View Article and Find Full Text PDFPersistent transcriptional events in ventral tegmental area (VTA) and other reward relevant brain regions contribute to enduring behavioral adaptations that characterize substance use disorder. Recent data from our laboratory indicate that aberrant accumulation of the newly discovered histone post-translational modification (PTM), H3 dopaminylation at glutamine 5 (H3Q5dop), contributes significantly to cocaine-seeking behavior following prolonged periods of abstinence. It remained unclear, however, whether this modification is important for relapse vulnerability in the context of other drugs of abuse, such as opioids.
View Article and Find Full Text PDFProtein kinase Mζ (PKMζ) maintains long-term potentiation (LTP) and long-term memory through persistent increases in kinase expression. Early-life adversity is a precursor to adult mood and anxiety disorders, in part, through persistent disruption of emotional memory throughout life. Here we subjected 10- to 16-wk-old male bonnet macaques to adversity by a maternal variable-foraging demand paradigm.
View Article and Find Full Text PDFBackground: Early-life stress is associated with alterations in telomere length, a marker of accumulated stress and aging, and a risk factor for psychiatric disorders. Nonhuman primate maternal variable foraging demand (VFD) is a validated early-life stress model, resulting in anxiety- and depressive-like symptoms in offspring. Previous studies reported increased plasma glucagon-like peptide 1 (pGLP-1) along with insulin resistance in this model.
View Article and Find Full Text PDFEarly life stress (ELS) precedes alterations to neuro-immune activation, which may mediate an increased risk for stress-related psychiatric disorders, potentially through alterations of central kynurenine pathway (KP) metabolites, the latter being relatively unexplored. We hypothesized that ELS in a non-human primate model would lead to a reduction of neuroprotective and increases of neurotoxic KP metabolites. Twelve adult female bonnet macaques reared under conditions of maternal variable foraging demand (VFD) were compared to 27 age- and weight-matched non-VFD-exposed female controls.
View Article and Find Full Text PDFIntroduction: Attenuated adult hippocampal neurogenesis may manifest in affective symptomatology and/or resistance to antidepressant treatment. While early-life adversity and the short variant ('s') of the serotonin transporter gene's long polymorphic region (5-HTTLPR) are suggested as interacting risk factors for affective disorders, no studies have examined whether their superposed risk effectuates neurogenic changes into adulthood. Similarly, it is not established whether reduced hippocampal volume in adolescence, variously identified as a marker and antecedent of affective disorders, anticipates diminished adult neurogenesis.
View Article and Find Full Text PDFSubstance use disorders (SUDs) are chronic brain diseases characterized by transitions from recreational to compulsive drug use and aberrant drug craving that persists for months to years after abstinence is achieved. The transition to compulsive drug use implies that plasticity is occurring, altering the physiology of the brain to precipitate addicted states. Epigenetic phenomena represent a varied orchestra of transcriptional tuning mechanisms that, in response to environmental stimuli, create and maintain gene expression-mediated physiological outcomes.
View Article and Find Full Text PDFVulnerability to relapse during periods of attempted abstinence from cocaine use is hypothesized to result from the rewiring of brain reward circuitries, particularly ventral tegmental area (VTA) dopamine neurons. How cocaine exposures act on midbrain dopamine neurons to precipitate addiction-relevant changes in gene expression is unclear. We found that histone H3 glutamine 5 dopaminylation (H3Q5dop) plays a critical role in cocaine-induced transcriptional plasticity in the midbrain.
View Article and Find Full Text PDFExcessive abuse of psychoactive substances is one of the leading contributors to morbidity and mortality worldwide. In this book chapter, we review translational research strategies that are applied in the pursuit of new and more effective therapeutics for substance use disorder (SUD). The complex, multidimensional nature of psychiatric disorders like SUD presents difficult challenges to investigators.
View Article and Find Full Text PDFIntroduction: Pattern separation aids cognitive flexibility by reducing interference between closely related memories. Dentate gyrus (DG) neurogenesis may facilitate pattern separation by blocking memory retrieval via inhibition of non-neurogenic downstream CA3 neurons. We hypothesized that immature adult-born DG neurons would be associated with decreased CA3 activation and increased cognitive flexibility.
View Article and Find Full Text PDFBackground: Maternal response to allostatic overload during infant rearing may alter neurobiological measures in grown offspring, potentially increasing susceptibility to mood and anxiety disorders. We examined maternal cerebrospinal fluid (CSF) glutamate response during exposure to variable foraging demand (VFD), a bonnet macaque model of allostatic overload, testing whether activation relative to baseline predicted concomitant CSF elevations of the stress neuropeptide, corticotropin-releasing factor. We investigated whether VFD-induced activation of maternal CSF glutamate affects maternal-infant attachment patterns and offspring CSF 5-hydroxyindoleacetic acid concentrations.
View Article and Find Full Text PDFBackground: Early life stress (ELS) in macaques in the form of insecure maternal attachment putatively induces epigenetic adaptations resulting in a "thrifty phenotype" throughout the life cycle. For instance, ELS induces persistent increases in insulin resistance, hippocampal and corpus callosum atrophy and reduced "behavioral plasticity", which, taken together, engenders an increased risk for mood and anxiety disorders in humans but also a putative sparing of calories. Herein, we test the hypothesis whether a thrifty phenotype induced by ELS is peripherally evident as hypotrophy of cardiac structure and function, raising the possibility that certain mood disorders may represent maladaptive physiological and central thrift adaptations.
View Article and Find Full Text PDFBackground: Early life stress (ELS) is cited as a risk for mood and anxiety disorders, potentially through altered serotonin neurotransmission. We examined the effects of ELS, utilizing the variable foraging demand (VFD) macaque model, on adolescent monoamine metabolites. We sought to replicate an increase in cerebrospinal fluid (CSF) 5-hydroxyindoleacetic acid (5-HIAA) observed in two previous VFD cohorts.
View Article and Find Full Text PDFGlucagon-like peptide-1 (GLP-1) regulates carbohydrate metabolism and promotes neurogenesis. We reported an inverse correlation between adult body mass and neurogenesis in nonhuman primates. Here we examine relationships between physiological levels of the neurotrophic incretin, plasma GLP-1 (pGLP-1), and body mass index (BMI) in adolescence to adult neurogenesis and associations with a diabesity diathesis and infant stress.
View Article and Find Full Text PDF