Defective interfering particles (DIPs) are regarded as potent broad-spectrum antivirals. We developed a mathematical model that describes intracellular co-infection dynamics of influenza standard virus (STV) and "OP7", a new type of influenza DIP discovered recently. Based on experimental data from studies to calibrate the model and confirm its predictions, we deduce OP7's mechanisms of interference, which were yet unknown.
View Article and Find Full Text PDFDefective interfering particles (DIPs) of influenza A virus (IAV) are suggested for use as broad-spectrum antivirals. We discovered a new type of IAV DIP named "OP7" that carries point mutations in its genome segment (Seg) 7 instead of a deletion as in conventional DIPs (cDIPs). Recently, using genetic engineering tools, we generated "OP7 chimera DIPs" that carry point mutations in Seg 7 plus a deletion in Seg 1.
View Article and Find Full Text PDFInfluenza A virus (IAV) defective interfering particles (DIPs) are considered as new promising antiviral agents. Conventional DIPs (cDIPs) contain a deletion in the genome and can only replicate upon co-infection with infectious standard virus (STV), during which they suppress STV replication. We previously discovered a new type of IAV DIP "OP7" that entails genomic point mutations and displays higher antiviral efficacy than cDIPs.
View Article and Find Full Text PDFNew broadly acting and readily available antiviral agents are needed to combat existing and emerging viruses. Defective interfering particles (DIPs) of influenza A virus (IAV) are regarded as promising options for the prevention and treatment of IAV infections. Interestingly, IAV DIPs also inhibit unrelated viral infections by stimulating antiviral innate immunity.
View Article and Find Full Text PDFAppl Microbiol Biotechnol
October 2023
Retroviral vectors derived from murine leukemia virus (MLV) are used in somatic gene therapy applications e.g. for genetic modification of hematopoietic stem cells.
View Article and Find Full Text PDFMadin-Darby canine kidney (MDCK) cells are widely used in basic research and for the propagation of influenza A viruses (IAV) for vaccine production. To identify targets for antiviral therapies and to optimize vaccine manufacturing, a detailed understanding of the viral life cycle is important. This includes the characterization of virus entry, the synthesis of the various viral RNAs and proteins, the transfer of viral compounds in the cell and virus budding.
View Article and Find Full Text PDFDefective interfering particles (DIPs) of influenza A virus (IAV) are naturally occurring mutants that have an internal deletion in one of their eight viral RNA (vRNA) segments, rendering them propagation-incompetent. Upon coinfection with infectious standard virus (STV), DIPs interfere with STV replication through competitive inhibition. Thus, DIPs are proposed as potent antivirals for treatment of the influenza disease.
View Article and Find Full Text PDFRespiratory diseases including influenza A virus (IAV) infections represent a major threat to human health. While the development of a vaccine requires a lot of time, a fast countermeasure could be the use of defective interfering particles (DIPs) for antiviral therapy. IAV DIPs are usually characterized by a large internal deletion in one viral RNA segment.
View Article and Find Full Text PDFCell culture-derived defective interfering particles (DIPs) are considered for antiviral therapy due to their ability to inhibit influenza A virus (IAV) production. DIPs contain a large internal deletion in one of their eight viral RNAs (vRNAs) rendering them replication-incompetent. However, they can propagate alongside their homologous standard virus (STV) during infection in a competition for cellular and viral resources.
View Article and Find Full Text PDFSevere acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causing coronavirus disease 2019 (COVID-19) emerged in late 2019 and resulted in a devastating pandemic. Although the first approved vaccines were already administered by the end of 2020, worldwide vaccine availability is still limited. Moreover, immune escape variants of the virus are emerging against which the current vaccines may confer only limited protection.
View Article and Find Full Text PDFBackground: Infections with influenza A virus (IAV) cause high morbidity and mortality in humans. Additional to vaccination, antiviral drugs are a treatment option. Besides FDA-approved drugs such as oseltamivir or zanamivir, virus-derived defective interfering (DI) particles (DIPs) are considered promising new agents.
View Article and Find Full Text PDFThe novel influenza A virus (IAV) defective interfering particle "OP7" inhibits IAV replication in a co-infection and was previously suggested as a promising antiviral agent. Here, we report a batch-mode cell culture-based production process for OP7. In the present study, a seed virus containing standard virus (STV) and OP7 was used.
View Article and Find Full Text PDFVirus replication displays a large cell-to-cell heterogeneity; yet, not all sources of this variability are known. Here, we study the effect of defective interfering (DI) particle (DIP) co-infection on cell-to-cell variability in influenza A virus (IAV) replication. DIPs contain a large internal deletion in one of their eight viral RNAs (vRNA) and are, thus, defective in virus replication.
View Article and Find Full Text PDFInfluenza A viruses (IAV) are commonly used to infect animal cell cultures for research purposes and vaccine production. Their replication is influenced strongly by the multiplicity of infection (MOI), which ranges over several orders of magnitude depending on the respective application. So far, mathematical models of IAV replication have paid little attention to the impact of the MOI on infection dynamics and virus yields.
View Article and Find Full Text PDFDefective interfering particles (DIPs) replicate at the expense of coinfecting, fully infectious homologous virus. Typically, they contain a highly deleted form of the viral genome. Utilizing single-cell analysis, here we report the discovery of a yet-unknown DIP type, derived from influenza A viruses (IAVs), termed OP7 virus.
View Article and Find Full Text PDFInfluenza viruses are respiratory pathogens and can cause severe disease. The best protection against influenza is provided by annual vaccination. These vaccines are produced in embryonated chicken eggs or using continuous animal cell lines.
View Article and Find Full Text PDFBiochemical reactions are subject to stochastic fluctuations that can give rise to cell-to-cell variability. Yet, how this variability affects viral infections, which themselves involve noisy reactions, remains largely elusive. Here we present single-cell experiments and stochastic simulations that reveal a large heterogeneity between influenza A virus (IAV)-infected cells.
View Article and Find Full Text PDF