Publications by authors named "Sascha Kopp"

Medical devices and technologies must undergo extensive testing and validation before being certified for public healthcare use, especially in oncology where a high research focus is on new advancements. Human 3D-tissue models can offer valuable insights into cancer behavior and treatment efficacy. This study developed a cell phantom setup using a rattail collagen-based hydrogel to facilitate reproducible investigations into ablation techniques, focusing on electroporation (EP) for lung tumor cells.

View Article and Find Full Text PDF

Different studies suggest an impact of biofilms on carcinogenic lesion formation in varying human tissues. However, the mechanisms of cancer formation are difficult to examine in vivo as well as in vitro. Cell culture approaches, in most cases, are unable to keep a bacterial steady state without any overgrowth.

View Article and Find Full Text PDF

Over the last 30 years, the prevalence of osteoarthritis (OA), a disease characterized by a loss of articular cartilage, has more than doubled worldwide. Patients suffer from pain and progressive loss of joint function. Cartilage is an avascular tissue mostly consisting of extracellular matrix with embedded chondrocytes.

View Article and Find Full Text PDF

We recently reported that synthetic glucocorticoid dexamethasone (DEX) is able to suppress metastasis-like spheroid formation in a culture of follicular thyroid cancer (FTC)-133 cells cultured under random positioning. We now show that this inhibition was selective for two metastatic thyroid carcinoma cells, FTC-133 and WRO, whereas benign Nthy-ori 3-1 thyrocytes and recurrent ML-1 follicular thyroid cancer cells were not affected by DEX. We then compare Nthy-ori 3-1 and FTC-133 cells concerning their adhesion and mechanosignaling.

View Article and Find Full Text PDF

Prostate cancer metastasis has an enormous impact on the mortality of cancer patients. Factors involved in cancer progression and metastasis are known to be key players in microgravity (µ)-driven three-dimensional (3D) cancer spheroid formation. We investigated PC-3 prostate cancer cells for 30 min, 2, 4 and 24 h on the random positioning machine (RPM), a device simulating µ on Earth.

View Article and Find Full Text PDF

A spaceflight to the International Space Station (ISS) is a dream of many researchers. We had the chance to investigate the effect of real microgravity (CellBox-2 Space mission) on the transcriptome and proteome of FTC-133 human follicular thyroid cancer cells (TCC). The cells had been sent to the ISS by a Falcon 9 rocket of SpaceX CRS-13 from Cape Canaveral (United States) and cultured in six automated hardware units on the ISS before they were fixed and returned to Earth.

View Article and Find Full Text PDF

In this study, we evaluated changes in focal adhesions (FAs) in two types of breast cancer cell (BCC) lines (differentiated MCF-7 and the triple-negative MDA-MB-231 cell line) exposed to simulated microgravity (s-μ) created by a random positioning machine (RPM) for 24 h. After exposure, the BCC changed their growth behavior and exhibited two phenotypes in RPM samples: one portion of the cells grew as a normal two-dimensional monolayer [adherent (AD) BCC], while the other portion formed three-dimensional (3D) multicellular spheroids (MCS). After 1 h and 30 min (MDA-MB-231) and 1 h 40 min (MCF-7), the MCS adhered completely to the slide flask bottom.

View Article and Find Full Text PDF

Functioning as the outermost self-renewing protective layer of the human organism, skin protects against a multitude of harmful biological and physical stimuli. Consisting of ectodermal, mesenchymal, and neural crest-derived cell lineages, tissue homeostasis, and signal transduction are finely tuned through the interplay of various pathways. A health problem of astronauts in space is skin deterioration.

View Article and Find Full Text PDF

The objective of this review is to give an overview of the pathophysiological effects of the Coronavirus Disease 2019 (COVID-19) in relation to hypertension (HT), with a focus on the Renin-Angiotensin-Aldosterone System (RAAS) and the MAS receptor. HT is a multifactorial disease and a public health burden, as it is a risk factor for diseases like stroke, coronary artery disease, and heart failure, leading to 10.4 million deaths yearly.

View Article and Find Full Text PDF

Articular cartilage is a skeletal tissue of avascular nature and limited self-repair capacity. Cartilage-degenerative diseases, such as osteoarthritis (OA), are difficult to treat and often necessitate joint replacement surgery. Cartilage is a tough but flexible material and relatively easy to damage.

View Article and Find Full Text PDF

Breast cancer is the leading cause of cancer death in females. The incidence has risen dramatically during recent decades. Dismissed as an "unsolved problem of the last century", breast cancer still represents a health burden with no effective solution identified so far.

View Article and Find Full Text PDF

A spaceflight has enormous influence on the health of space voyagers due to the combined effects of microgravity and cosmic radiation. Known effects of microgravity (μg) on cells are changes in differentiation and growth. Considering the commercialization of spaceflight, future space exploration, and long-term manned flights, research focusing on differentiation and growth of stem cells and cancer cells exposed to real (r-) and simulated (s-) μg is of high interest for regenerative medicine and cancer research.

View Article and Find Full Text PDF

Prostate cancer is one of the leading causes of cancer mortality in men worldwide. An unusual but unique environment for studying tumor cell processes is provided by microgravity, either in space or simulated by ground-based devices like a random positioning machine (RPM). In this study, prostate adenocarcinoma-derived PC-3 cells were cultivated on an RPM for time periods of 3 and 5 days.

View Article and Find Full Text PDF

Detachment and the formation of spheroids under microgravity conditions can be observed with various types of intrinsically adherent human cells. In particular, for cancer cells this process mimics metastasis and may provide insights into cancer biology and progression that can be used to identify new drug/target combinations for future therapies. By using the synthetic glucocorticoid dexamethasone (DEX), we were able to suppress spheroid formation in a culture of follicular thyroid cancer (FTC)-133 cells that were exposed to altered gravity conditions on a random positioning machine.

View Article and Find Full Text PDF

With the commercialization of spaceflight and the exploration of space, it is important to understand the changes occurring in human cells exposed to real microgravity (r-µ) conditions. We examined the influence of r-µ, simulated microgravity (s-µ, incubator random positioning machine (iRPM)), hypergravity (hyper-), and vibration (VIB) on triple-negative breast cancer (TNBC) cells (MDA-MB-231 cell line) with the aim to study early changes in the gene expression of factors associated with cell adhesion, apoptosis, nuclear factor "kappa-light-chain-enhancer" of activated B-cells (NF-κB) and mitogen-activated protein kinase (MAPK) signaling. We had the opportunity to attend a parabolic flight (PF) mission and to study changes in RNA transcription in the MDA-MB cells exposed to PF maneuvers (29th Deutsches Zentrum für Luft- und Raumfahrt (DLR) PF campaign).

View Article and Find Full Text PDF

Background/aims: In articular cartilage, chondrocytes are the predominant cell type. A long-term stay in space can lead to bone loss and cartilage breakdown. Due to the poor regenerative capacity of cartilage, this may impair the crewmembers' mobility and influence mission activities.

View Article and Find Full Text PDF

With the increasing number of spaceflights, it is crucial to understand the changes occurring in human cells exposed to real microgravity (r-µ) conditions. We tested the effect of r-µ on MCF-7 breast cancer cells with the objective to investigate cytoskeletal alterations and early changes in the gene expression of factors belonging to the cytoskeleton, extracellular matrix, focal adhesion, and cytokines. In the Technische Experimente unter Schwerelosigkeit (TEXUS) 54 rocket mission, we had the opportunity to conduct our experiment during 6 min of r-µ and focused on cytoskeletal alterations of MCF-7 breast cancer cells expressing the Lifeact-GFP marker protein for the visualization of F-actin as well as the mCherry-tubulin fusion protein using the Fluorescence Microscopy Analysis System (FLUMIAS) for fast live-cell imaging under r-µ.

View Article and Find Full Text PDF

Microgravity in space or simulated by special ground-based devices provides an unusual but unique environment to study and influence tumour cell processes. By investigating thyroid cancer cells in microgravity for nearly 20 years, researchers got insights into tumour biology that had not been possible under normal laboratory conditions: adherently growing cancer cells detach from their surface and form three-dimensional structures. The cells included in these multicellular spheroids (MCS) were not only altered but behave also differently to those grown in flat sheets in normal gravity, more closely mimicking the conditions in the human body.

View Article and Find Full Text PDF

Background/aims: Endothelial cells exposed to the Random Positioning Machine (RPM) reveal three different phenotypes. They grow as a two-dimensional monolayer and form three-dimensional (3D) structures such as spheroids and tubular constructs. As part of the ESA-SPHEROIDS project we want to understand how endothelial cells (ECs) react and adapt to long-term microgravity.

View Article and Find Full Text PDF

Human cells, when exposed to both real and simulated microgravity (s-µ), form 3D tissue constructs mirroring in vivo architectures (e.g., cartilage, intima constructs, cancer spheroids and others).

View Article and Find Full Text PDF

Thyroid cancer is the most abundant tumor of the endocrine organs. Poorly differentiated thyroid cancer is still difficult to treat. Human cells exposed to long-term real (r-) and simulated (s-) microgravity (µ) revealed morphological alterations and changes in the expression profile of genes involved in several biological processes.

View Article and Find Full Text PDF

Medullary thyroid cancer (MTC) is a rare malignancy with a poor prognosis. First line therapy is surgery, which is the only curative method of the disease. However, in non-operable cases or with tumor progression and metastases, a systemic treatment is necessary.

View Article and Find Full Text PDF

Human follicular thyroid cancer cells (FTC-133) were sent to space via a sounding rocket during the TEXUS-53 mission to determine the impact of short-term microgravity on these cells. To enable cell culture and fixation in real microgravity, an automated experiment container (EC) was constructed. In order to ensure safe cell culture, cell-chambers consisting of polycarbonate (PC) material were used.

View Article and Find Full Text PDF