Long-range, terrestrial quantum networks require high-brightness single-photon sources emitting in the telecom C-band for maximum transmission rates. For solid-state quantum emitters, the underlying pumping process, i.e.
View Article and Find Full Text PDFQuantum key distribution (QKD) enables the transmission of information that is secure against general attacks by eavesdroppers. The use of on-demand quantum light sources in QKD protocols is expected to help improve security and maximum tolerable loss. Semiconductor quantum dots (QDs) are a promising building block for quantum communication applications because of the deterministic emission of single photons with high brightness and low multiphoton contribution.
View Article and Find Full Text PDFThe GaAs-based material system is well-known for hosting InAs quantum dots (QDs) with outstanding optical properties, typically emitting at a wavelength of around 900 nm. The insertion of a metamorphic buffer (MMB) can shift this emission to the technologically attractive telecom C-band range centered at 1550 nm. However, the thickness of common MMB designs (>1 μm) limits their compatibility with most photonic resonator types.
View Article and Find Full Text PDFThe combination of semiconductor quantum dots with photonic cavities is a promising way to realize nonclassical light sources with state-of-the-art performances regarding brightness, indistinguishability, and repetition rate. Here we demonstrate the coupling of InGaAs/GaAs QDs emitting in the telecom O-band to a circular Bragg grating cavity. We demonstrate a broadband geometric extraction efficiency enhancement by investigating two emission lines under above-band excitation, inside and detuned from the cavity mode, respectively.
View Article and Find Full Text PDF