Advanced pancreatic cancer is characterized by few treatment options and poor outcomes. Oncolytic virotherapy and chemotherapy involve complementary pharmacodynamics and could synergize to improve therapeutic efficacy. Likewise, multimodality treatment may cause additional toxicity, and new agents have to be safe.
View Article and Find Full Text PDFOncolytic virotherapy is an emerging treatment option for numerous cancers, with several virus families currently being evaluated in clinical trials. More specifically, vaccine-strain measles virus has arisen as a promising candidate for the treatment of different tumour types in several early clinical trials. Replicating viruses, and especially RNA viruses without proofreading polymerases, can rapidly adapt to varying environments by selecting quasispecies with advantageous genetic mutations.
View Article and Find Full Text PDFMeasles viruses derived from the live-attenuated Edmonton-B vaccine lineage are currently investigated as novel anti-cancer therapeutics. In this context, tumor specificity and oncolytic potency are key determinants of the therapeutic index. Here, we describe a systematic and comprehensive analysis of a recently developed post-entry targeting strategy based on the incorporation of microRNA target sites (miRTS) into the measles virus genome.
View Article and Find Full Text PDFViruses from the diverse family of Paramyxoviridae include important pathogens and are applied in gene therapy and for cancer treatment. The Tupaia paramyxovirus (TPMV), isolated from the kidney of a tree shrew, does not infect human cells and neutralizing antibodies against other Paramyxoviridae do not cross-react with TPMV. Here, we present a vector system for de novo generation of infectious TPMV that allows for insertion of additional genes as well as targeting using antibody single-chain variable fragments.
View Article and Find Full Text PDFOncolytic viruses (OVs) are unique anticancer agents based on their pleotropic modes of action, which include, besides viral tumor cell lysis, activation of antitumor immunity. A panel of diverse viruses, often genetically engineered, has advanced to clinical investigation, including phase 3 studies. This diversity of virotherapeutics not only offers interesting opportunities for the implementation of different therapeutic regimens but also poses challenges for clinical translation.
View Article and Find Full Text PDFWe hypothesized that the combination of oncolytic virotherapy with immune checkpoint modulators would reduce tumor burden by direct cell lysis and stimulate antitumor immunity. In this study, we have generated attenuated Measles virus (MV) vectors encoding antibodies against CTLA-4 and PD-L1 (MV-aCTLA-4 and MV-aPD-L1). We characterized the vectors in terms of growth kinetics, antibody expression, and cytotoxicity in vitro.
View Article and Find Full Text PDFMultiple types of oncolytic viruses are currently under investigation in clinical trials. To optimize therapeutic outcomes it is believed that the plethora of different tumor types will require a diversity of different virus types. Sendai virus (SeV), a murine parainfluenza virus, displays a broad host range, enters cells within minutes and already has been applied safely as a gene transfer vector in gene therapy patients.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
February 2014
Aptazymes are small, ligand-dependent self-cleaving ribozymes that function independently of transcription factors and can be customized for induction by various small molecules. Here, we introduce these artificial riboswitches for regulation of DNA and RNA viruses. We hypothesize that they represent universally applicable tools for studying viral gene functions and for applications as a safety switch for oncolytic and live vaccine viruses.
View Article and Find Full Text PDFWe developed a novel vaccine platform based on a paramyxoviral, genome replication-deficient Sendai virus vector that can express heterologous genes inserted into the genome. To validate the novel approach in vivo, we generated a combined vaccine candidate against human respiratory syncytial virus (RSV) and human parainfluenza virus type 3 (PIV3). The present study compares two different methods of displaying heterologous antigens: (i) the RSV fusion (F) protein, encoded as a secretable version in an additional transcription unit, serves as an antigen only after being expressed in infected cells; (ii) PIV3 fusion (F) and hemagglutinin-neuraminidase (HN) genes, replacing Sendai counterparts in the vector genome, are also expressed as structural components on the surface of vaccine particles.
View Article and Find Full Text PDFTherapy-induced senescence (TIS) as a permanent growth arrest can be induced by various stimuli, including anticancer compounds. TIS emerged as a promising strategy to overcome resistance phenomena. However, senescent cancer cells might regain proliferation activity in vivo or even secrete tumor-promoting cytokines.
View Article and Find Full Text PDFOncolytic measles viruses (MV) derived from the live attenuated vaccine strain have been engineered for increased antitumor activity, and are currently under investigation in clinical phase 1 trials. Approaches with other viral vectors have shown that insertion of immunomodulatory transgenes enhances the therapeutic potency. In this study, we engineered MV for expression of the cytokine granulocyte-macrophage colony-stimulating factor (GM-CSF).
View Article and Find Full Text PDFCholangiocarcinoma (CC) is curable only in early stages by complete surgical resection. Thus, in advanced disease stages in which a complete removal of the tumor mass is no longer possible and palliative chemotherapy achieves only modest success, therapeutics employing new methods of action are desperately needed. Oncolytic viruses employed in clinical studies have been shown to spread preferentially in cancer cells.
View Article and Find Full Text PDFEffective treatment modalities for advanced melanoma are desperately needed. An innovative approach is virotherapy, in which viruses are engineered to infect cancer cells, resulting in tumor cell lysis and an amplification effect by viral replication and spread. Ideally, tumor selectivity of these oncolytic viruses is already determined during viral cell binding and entry, which has not been reported for melanoma.
View Article and Find Full Text PDFIn the beginning of a paramyxovirus infection after cell entry viral survival depends on efficient primary (1°) transcription and on the stability of only one input nucleocapsid. Here we examined the influence of the viral polymerase co-factor phosphoprotein P on the very early phase of an infection, i.e.
View Article and Find Full Text PDFOncolytic measles viruses (MV) derived from the live attenuated vaccine strain have been engineered for increased tumor-cell specificity, and are currently under investigation in clinical trials including a phase I study for glioblastoma multiforme (GBM). Recent preclinical studies have shown that the cellular tropism of several viruses can be controlled by inserting microRNA-target sequences into their genomes, thereby inhibiting spread in tissues expressing cognate microRNAs. Since neuron-specific microRNA-7 is downregulated in gliomas but highly expressed in normal brain tissue, we engineered a microRNA-sensitive virus containing target sites for microRNA-7 in the 3'-untranslated region of the viral fusion gene.
View Article and Find Full Text PDFRespiratory syncytial virus (RSV) causes severe respiratory disease in infants and a vaccine is highly desirable. The fusion (F) protein of RSV is an important vaccine target, but the contribution of F-specific T cells to successful vaccination remains unclear. We studied the immune response to vaccination of mice with a recombinant Sendai virus expressing RSV F (rSeV F).
View Article and Find Full Text PDFAmong the members of the paramyxovirus family, the transcription process and the components involved have been studied under in vitro conditions thus far. Here, we reexamined the function of the viral RNA-dependent RNA polymerase through infection studies with Sendai virus (SeV) N and P deletion (Delta) mutants. To elucidate solely transcription-specific processes, all virus mutants also were rendered deficient in genome replication.
View Article and Find Full Text PDFDelivery of Ags to dendritic cells (DCs) plays a pivotal role in the induction of efficient immune responses ranging from immunity to tolerance. The observation that certain viral pathogens are able to infect DCs has led to a concept in which applications of recombinant viruses are used for Ag delivery with the potential benefit of inducing potent Ag-specific T cell responses directed against multiple epitopes. As a prerequisite for such an application, the infection of DCs by recombinant viruses should not interfere with their stimulatory capacity.
View Article and Find Full Text PDFEntry of most paramyxoviruses is accomplished by separate attachment and fusion proteins that function in a cooperative manner. Because of this close interdependence, it was not possible with most paramyxoviruses to replace either of the two protagonists by envelope glycoproteins from related paramyxoviruses. By using reverse genetics of Sendai virus (SeV), we demonstrate that chimeric respiratory syncytial virus (RSV) fusion proteins containing either the cytoplasmic domain of the SeV fusion protein or in addition the transmembrane domain were efficiently incorporated into SeV particles provided the homotypic SeV-F was deleted.
View Article and Find Full Text PDFInduction of apoptosis during Sendai virus (SeV) infection has previously been documented to be triggered by initiator caspases (for strain F) or by a contribution of the cellular protein TIAR (T-cell-activated intracellular antigen-related) (for strain Z). Here, evidence was provided that both TIAR and caspases are simultaneously involved in apoptosis induction as a result of infection with SeV strain F. SeV F infection induced death in all tested cell lines, which could only be partially prevented through the pan-caspase inhibitor z-VAD-fmk.
View Article and Find Full Text PDFRecombinant Sendai virus (rSeV) infects respiratory epithelial cells in animal models and cultures of undifferentiated human nasal cells. It was the aim of this study to investigate the capability of rSeV to express a transgene in human airway epithelium. Differentiated human airway epithelial cells were generated using air-liquid interface culture techniques.
View Article and Find Full Text PDFRecombinant Sendai virus vectors (SeVV) have become an attractive tool for basic virological as well as for gene transfer studies. However, to (i) reduce the cellular injury induced by basic recombinant SeV vectors (encoding all six SeV genes as being present in SeV wild-type (wt) genomes) and to (ii) improve SeV vector safety, deletions of viral genes are necessary for the construction of superior SeVV generations. As a strong expression system recombinant replication-incompetent adenoviruses, coding for SeV proteins hemagglutinin-neuraminidase (HN), fusion (F), or matrix (M), were generated and successfully employed for the propagation of single gene deleted (DeltaHN, DeltaF, DeltaM) recombinant SeVV.
View Article and Find Full Text PDFA common problem for viral vectors in the field of somatic gene therapy is the dependence of an efficient cellular transduction on the cell cycle phase of target cells. An optimized viral vector system should therefore transduce cells in different cell cycle phases equally to improve transduction efficiencies. Recent observations that recombinant Sendai viruses (SeV) can infect a broad range of different tissues suggested SeV to be a good candidate for future gene therapeutic strategies in which dividing and non-dividing cells have to be reached.
View Article and Find Full Text PDFTreatment by gene replacement is critical in the field of gene therapy. Suitable vectors for the delivery of therapeutic genes have to be generated and tested in preclinical settings. Recently, extraordinary features for a local gene delivery by Sendai virus vectors (SeVV) have been reported for different tissues.
View Article and Find Full Text PDF