Antimicrobial resistance is recognized as one of the greatest emerging threats to public health. Antimicrobial resistant (AMR) microorganisms affect nearly 2 million people a year in the United States alone and place an estimated $20 billion burden on the healthcare system. The rise of AMR microorganisms can be attributed to a combination of overprescription of antimicrobials and a lack of accessible diagnostic methods.
View Article and Find Full Text PDFInterest in developing paper-based devices for point-of-care diagnostics in resource-limited settings has risen remarkably in recent decades. In this paper, we demonstrate what we refer to as "high yield passive rrythrocyte removal" (HYPER) technology, which utilizes capillary forces in a unique cross-flow filtration for the separation of whole blood with performance comparable to centrifuges. As we will demonstrate, state-of-the-art passive blood separation methods implemented in paper-based systems exhibit rapid blood cell clogging on the filtration media or serum outlet and yield only about 10-30% of the total serum present in the sample.
View Article and Find Full Text PDFThe global healthcare landscape is experiencing increasing demand for CLIA-waived testing facilities that offer diagnostic capabilities at lower costs and greater convenience than traditional laboratory testing. While several new diagnostic tools have emerged to fulfill testing requirements in these environments, centrifuges have been stymied from transitioning to the point-of-need as the US Food and Drug Administration (FDA) classifies them as mostly unsuitable for use in CLIA-waived environments. Limitations in sample processing capabilities adversely affects the ability for CLIA-waived testing environments to offer a broad testing portfolio and present-day diagnostics are bottlenecked by the requirement for centrifugation.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
December 2017
Micronutrient deficiencies such as those of vitamin A and iron affect a third of the world's population with consequences such as night blindness, higher child mortality, anemia, poor pregnancy outcomes, and reduced work capacity. Many efforts to prevent or treat these deficiencies are hampered by the lack of adequate, accessible, and affordable diagnostic methods that can enable better targeting of interventions. In this work, we demonstrate a rapid diagnostic test and mobile enabled platform for simultaneously quantifying iron (ferritin), vitamin A (retinol-binding protein), and inflammation (C-reactive protein) status.
View Article and Find Full Text PDFMicronutrient deficiency is widespread and negatively impacts morbidity, mortality, and quality of life globally. On-going advancements in nutritional biomarker discovery are enabling objective and accurate assessment of an individual's micronutrient and broader nutritional status. The vast majority of such assessment however still needs to be conducted in traditional centralized laboratory facilities which are not readily accessible in terms of cost and time in both the developed and developing countries.
View Article and Find Full Text PDF