Publications by authors named "Sasan Jalilifiroozinezhad"

Modulation of the immune system is an important therapeutic strategy in a wide range of diseases, and is fundamental to the development of vaccines. However, optimally safe and effective immunotherapy requires precision in the delivery of stimulatory cues to the right cells at the right place and time, to avoid toxic overstimulation in healthy tissues or incorrect programming of the immune response. To this end, biomaterials are being developed to control the location, dose, and timing of vaccines and immunotherapies.

View Article and Find Full Text PDF

Current clinical products delivering the osteogenic growth factor bone morphogenetic protein 2 (BMP-2) for bone regeneration have been plagued by safety concerns due to a high incidence of off-target effects resulting from bolus release and supraphysiological doses. Layer-by-layer (LbL) film deposition offers the opportunity to coat bone defect-relevant substrates with thin films containing proteins and other therapeutics; however, control of release kinetics is often hampered by interlayer diffusion of drugs throughout the film during assembly, which causes burst drug release. In this work, we present the design of different laponite clay diffusional barrier layer architectures in self-assembled LbL films to modulate the release kinetics of BMP-2 from the surface of a biodegradable implant.

View Article and Find Full Text PDF

Environmental enteric dysfunction (EED)-a chronic inflammatory condition of the intestine-is characterized by villus blunting, compromised intestinal barrier function and reduced nutrient absorption. Here we show that essential genotypic and phenotypic features of EED-associated intestinal injury can be reconstituted in a human intestine-on-a-chip lined by organoid-derived intestinal epithelial cells from patients with EED and cultured in nutrient-deficient medium lacking niacinamide and tryptophan. Exposure of the organ chip to such nutritional deficiencies resulted in congruent changes in six of the top ten upregulated genes that were comparable to changes seen in samples from patients with EED.

View Article and Find Full Text PDF

Background & Aims: During liver fibrosis, tissue repair mechanisms replace necrotic tissue with highly stabilized extracellular matrix proteins. Extracellular matrix stabilization influences the speed of tissue recovery. Here, we studied the expression and function of peroxidasin (PXDN), a peroxidase that uses hydrogen peroxide to cross-link collagen IV during liver fibrosis progression and regression.

View Article and Find Full Text PDF

It is impossible to analyze human-specific host-microbiome interactions using animal models and existing in vitro methods fail to support survival of human cells in direct contact with complex living microbiota for extended times. Here we describe a protocol for culturing human organ-on-a-chip (Organ Chip) microfluidic devices lined by human patient-derived primary intestinal epithelium in the presence of a physiologically relevant transluminal hypoxia gradient that enables their coculture with hundreds of different living aerobic and anaerobic bacteria found within the human gut microbiome. This protocol can be adapted to provide different levels of oxygen tension to facilitate coculturing of microbiome from different regions of gastrointestinal tract, and the same system can be applied with any other type of Organ Chip.

View Article and Find Full Text PDF

The ability to coat scaffolds and wound dressings with therapeutic short interfering RNA (siRNA) holds much potential for applications in wound healing, cancer treatment, and regenerative medicine. Layer-by-layer (LbL) technology is an effective method to formulate polyelectrolyte thin films for local delivery of siRNA; however, the formation and efficacy of LbL coatings as drug delivery systems are highly contingent on the assembly conditions. Here, we investigate the effects of LbL assembly parameters on film composition and consequent siRNA-mediated gene knockdown efficiency in vitro.

View Article and Find Full Text PDF

Bovine tuberculosis (bTB) is a disease of livestock with severe and worldwide economic, animal welfare and zoonotic consequences. Application of test-and-slaughter-based control polices reliant on tuberculin skin testing has been the mainstay of bTB control in cattle. However, little is known about the temporal development of the bovine tuberculin skin test response at the dermal sites of antigen injection.

View Article and Find Full Text PDF

Animals often fail to faithfully mimic human diseases and drug toxicities, and most in vitro models are not complex enough to recapitulate human body function and pathophysiology. Organ-on-chip culture technology, however, offers a promising tool for the study of tissue development and homeostasis, which has brought us one step closer to performing human experimentation in vitro. To recapitulate the complex functionality of multiple organs at once, their respective on-chip models can be linked to create a functional human body-on-chip platform.

View Article and Find Full Text PDF

The liver is the largest internal organ of the body with complex microarchitecture and function that plays critical roles in drug metabolism. Hepatotoxicity and drug-induced liver injury (DILI) caused by various drugs is the main reason for late-stage drug failures. Moreover, liver diseases are among the leading causes of death in the world, with the number of new cases arising each year.

View Article and Find Full Text PDF

Analyses of drug pharmacokinetics (PKs) and pharmacodynamics (PDs) performed in animals are often not predictive of drug PKs and PDs in humans, and in vitro PK and PD modelling does not provide quantitative PK parameters. Here, we show that physiological PK modelling of first-pass drug absorption, metabolism and excretion in humans-using computationally scaled data from multiple fluidically linked two-channel organ chips-predicts PK parameters for orally administered nicotine (using gut, liver and kidney chips) and for intravenously injected cisplatin (using coupled bone marrow, liver and kidney chips). The chips are linked through sequential robotic liquid transfers of a common blood substitute by their endothelium-lined channels (as reported by Novak et al.

View Article and Find Full Text PDF

Organ chips can recapitulate organ-level (patho)physiology, yet pharmacokinetic and pharmacodynamic analyses require multi-organ systems linked by vascular perfusion. Here, we describe an 'interrogator' that employs liquid-handling robotics, custom software and an integrated mobile microscope for the automated culture, perfusion, medium addition, fluidic linking, sample collection and in situ microscopy imaging of up to ten organ chips inside a standard tissue-culture incubator. The robotic interrogator maintained the viability and organ-specific functions of eight vascularized, two-channel organ chips (intestine, liver, kidney, heart, lung, skin, blood-brain barrier and brain) for 3 weeks in culture when intermittently fluidically coupled via a common blood substitute through their reservoirs of medium and endothelium-lined vascular channels.

View Article and Find Full Text PDF

The inaccessibility of living bone marrow (BM) hampers the study of its pathophysiology under myelotoxic stress induced by drugs, radiation or genetic mutations. Here, we show that a vascularized human BM-on-a-chip (BM chip) supports the differentiation and maturation of multiple blood cell lineages over 4 weeks while improving CD34 cell maintenance, and that it recapitulates aspects of BM injury, including myeloerythroid toxicity after clinically relevant exposures to chemotherapeutic drugs and ionizing radiation, as well as BM recovery after drug-induced myelosuppression. The chip comprises a fluidic channel filled with a fibrin gel in which CD34 cells and BM-derived stromal cells are co-cultured, a parallel channel lined by human vascular endothelium and perfused with culture medium, and a porous membrane separating the two channels.

View Article and Find Full Text PDF

Background & Aims: The mucus layer in the human colon protects against commensal bacteria and pathogens, and defects in its unique bilayered structure contribute to intestinal disorders, such as ulcerative colitis. However, our understanding of colon physiology is limited by the lack of in vitro models that replicate human colonic mucus layer structure and function. Here, we investigated if combining organ-on-a-chip and organoid technologies can be leveraged to develop a human-relevant in vitro model of colon mucus physiology.

View Article and Find Full Text PDF

In the version of this Article originally published, the authors mistakenly cited Fig. 5d in the sentence beginning 'Importantly, the microbiome cultured in these primary Intestine Chips..

View Article and Find Full Text PDF

The diverse bacterial populations that comprise the commensal microbiome of the human intestine play a central role in health and disease. A method that sustains complex microbial communities in direct contact with living human intestinal cells and their overlying mucus layer in vitro would thus enable the investigation of host-microbiome interactions. Here, we show the extended coculture of living human intestinal epithelium with stable communities of aerobic and anaerobic human gut microbiota, using a microfluidic intestine-on-a-chip that permits the control and real-time assessment of physiologically relevant oxygen gradients.

View Article and Find Full Text PDF

Background: Species-specific differences in tolerance to infection are exemplified by the high susceptibility of humans to enterohemorrhagic Escherichia coli (EHEC) infection, whereas mice are relatively resistant to this pathogen. This intrinsic species-specific difference in EHEC infection limits the translation of murine research to human. Furthermore, studying the mechanisms underlying this differential susceptibility is a difficult problem due to complex in vivo interactions between the host, pathogen, and disparate commensal microbial communities.

View Article and Find Full Text PDF

Microfluidic organ-on-a-chip models of human intestine have been developed and used to study intestinal physiology and pathophysiology. In this article, we review this field and describe how microfluidic Intestine Chips offer new capabilities not possible with conventional culture systems or organoid cultures, including the ability to analyze contributions of individual cellular, chemical, and physical control parameters one-at-a-time; to coculture human intestinal cells with commensal microbiome for extended times; and to create human-relevant disease models. We also discuss potential future applications of human Intestine Chips, including how they might be used for drug development and personalized medicine.

View Article and Find Full Text PDF

Studies on human intestinal injury induced by acute exposure to γ-radiation commonly rely on use of animal models because culture systems do not faithfully mimic human intestinal physiology. Here we used a human Gut-on-a-Chip (Gut Chip) microfluidic device lined by human intestinal epithelial cells and vascular endothelial cells to model radiation injury and assess the efficacy of radiation countermeasure drugs in vitro. Exposure of the Gut Chip to γ-radiation resulted in increased generation of reactive oxygen species, cytotoxicity, apoptosis, and DNA fragmentation, as well as villus blunting, disruption of tight junctions, and compromise of intestinal barrier integrity.

View Article and Find Full Text PDF

Here we describe a method for fabricating a primary human Small Intestine-on-a-Chip (Intestine Chip) containing epithelial cells isolated from healthy regions of intestinal biopsies. The primary epithelial cells are expanded as 3D organoids, dissociated, and cultured on a porous membrane within a microfluidic device with human intestinal microvascular endothelium cultured in a parallel microchannel under flow and cyclic deformation. In the Intestine Chip, the epithelium forms villi-like projections lined by polarized epithelial cells that undergo multi-lineage differentiation similar to that of intestinal organoids, however, these cells expose their apical surfaces to an open lumen and interface with endothelium.

View Article and Find Full Text PDF

Delivery of genetically modified cells overexpressing Vascular Endothelial Growth Factor (VEGF) is a promising approach to induce therapeutic angiogenesis in ischemic tissues. The effect of the protein is strictly modulated by its interaction with the components of the extracellular matrix. Its therapeutic potential depends on a sustained but controlled release at the microenvironmental level in order to avoid the formation of abnormal blood vessels.

View Article and Find Full Text PDF

The availability of three-dimensional bioactive scaffolds with enhanced angiogenic capacity that have the capability to recruit tissue specific resident progenitors is of great importance for the regeneration of impaired skeletal muscle. Here, we have investigated whether introduction of chemoattractant factors to tissue specific extracellular matrix promotes cellular behaviour in vitro as well as muscle progenitor recruitment and vascularization in vivo. We developed an interconnective macroporous sponge from decellularized skeletal muscle with maintained biochemical traits of the intact muscle.

View Article and Find Full Text PDF

Assessing the morphological features of native and engineered tissues is pivotal to evaluate their degree of development and to identify possible structure-function relationships. Conventional histological or immunohistochemical imaging of stained sections provides limited information about their architecture. Scanning electron microscopy (SEM) yields sub-micrometric resolution images of tissues, but typically cannot be associated with the morphological structures identified by histology.

View Article and Find Full Text PDF

Injectable hydrogels that resemble electromechanical properties of the myocardium are crucial for cardiac tissue engineering prospects. We have developed a facile approach that uses chitosan (CS) to generate a thermosensitive conductive hydrogel with a highly porous network of interconnected pores. Gold nanoparticles (GNPs) were evenly dispersed throughout the CS matrix in order to provide electrical cues.

View Article and Find Full Text PDF

The availability of 3D sponges combining proper biochemical, biophysical, and biomechanical properties with enhanced capacity of in vivo engraftment and vascularization is crucial in regenerative medicine. A simple process is developed to generate macroporous scaffolds with a well-defined architecture of interconnected pores from chicken egg white (EW), a material with protein- and growth factor-binding features which has not yet been employed in regenerative medicine. The physicomechanical properties and degradation rates of the scaffold are finely tuned by using varying concentrations of the cross-linker, 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride, without alteration of the biochemical traits.

View Article and Find Full Text PDF