The referenced article [Opt. Lett.43, 4615 (2018)OPLEDP0146-959210.
View Article and Find Full Text PDFThe development of an intriguing concept using optical polymers for photonics is reported to enable modulation of refractive index (RI) in solution cast thin films with precise spatial control. While extensive efforts in polymer science have focused on methods to prepare optically transparent polymers with high RI, the creation of photoresponsive polymer systems to spatially adjust the refractive index upon irradiation is a distinct technical challenge requiring development of materials amenable to this process. The ability to create refractive index contrast (i.
View Article and Find Full Text PDFMiniaturized magnetic field sensors are increasingly used in various applications, such as geophysical exploration for minerals and oil, volcanology, earthquake studies, and biomedical imaging. Existing magnetometers lack either the spatial or the temporal resolution or are restricted to costly shielded labs and cannot operate in an unshielded environment. Increasing spatio-temporal resolution would allow for real-time measurements of magnetic fluctuations with high resolution.
View Article and Find Full Text PDFThe synthesis of a novel high sulfur content material possessing improved thermomechanical properties is reported via the inverse vulcanization of elemental sulfur (S) and 1,3,5-triisopropenylbenzene (TIB). A key feature of this system was the ability to afford highly cross-linked, thermosetting materials, where the use of TIB as a comonomer enabled facile control of the network structure and dramatically improved the glass transition temperature (relative to our earlier sulfur copolymers) of poly(sulfur-random-(1,3,5-triisopropenylbenzene)) (poly(S--TIB)) materials over a range from = 68 to 130 °C. This approach allowed for the incorporation of a high content of sulfur-sulfur (S-S) units in the copolymer that enabled thermomechanical scission of these dynamic covalent bonds and thermal reprocessing of the material, which we confirmed via dynamic rheological characterization.
View Article and Find Full Text PDF