Multicellular development requires the careful orchestration of gene expression to correctly create and position specialized cells. In the filamentous cyanobacterium Anabaena sp. strain PCC 7120, nitrogen-fixing heterocysts are differentiated from vegetative cells in a reproducibly periodic and physiologically relevant pattern.
View Article and Find Full Text PDFNitrogen-fixing heterocysts are arranged in a periodic pattern on filaments of the cyanobacterium Anabaena sp. strain PCC 7120 under conditions of limiting combined nitrogen. Patterning requires two inhibitors of heterocyst differentiation, PatS and HetN, which work at different stages of differentiation by laterally suppressing levels of an activator of differentiation, HetR, in cells adjacent to source cells.
View Article and Find Full Text PDFThe filamentous cyanobacterium Anabaena sp. strain PCC 7120 differentiates nitrogen-fixing heterocysts arranged in a periodic pattern when deprived of a fixed source of nitrogen. In a genetic screen for mutations that prevent diazotrophic growth, open reading frame all1758, which encodes a putative serine/threonine phosphatase, was identified.
View Article and Find Full Text PDFHetR, master regulator of heterocyst differentiation in the filamentous cyanobacterium Anabaena sp. strain PCC 7120, stimulates heterocyst differentiation via transcriptional autoregulation and is negatively regulated by PatS and HetN, both of which contain the active pentapeptide RGSGR. However, the direct targets of PatS and HetN remain uncertain.
View Article and Find Full Text PDF