Publications by authors named "Sasa Harkai"

We consider the influence of different nanoparticles or micrometre-scale colloidal objects, which we commonly refer to as particles, on liquid crystalline (LC) orientational order in essentially spatially homogeneous particle-LC mixtures. We first illustrate the effects of coupling a single particle with the surrounding nematic molecular field. A particle could either act as a "dilution", i.

View Article and Find Full Text PDF

Topological defects (TDs) are a consequence of symmetry breaking phase transitions and are ubiquitous in nature. An ideal testbed for their study are liquid crystals (LCs) owing to their large response to external stimuli and their large electrical and optical anisotropies. In this paper, we perform numerical simulations of topological defects of [Formula: see text] or [Formula: see text] enforced by the confining boundary.

View Article and Find Full Text PDF

An escaped radial director profile in a nematic liquid crystal cell can be transformed into a pair of strength m = +1/2 surface defects (and their associated disclination lines) at a threshold electric field. Analogously, a half-integer defect pair can be transformed at a threshold electric field into a director profile that escapes into the third dimension. These transitions were demonstrated experimentally and numerically, and are discussed in terms of topologically discontinuous and continuous pathways that connect the two states.

View Article and Find Full Text PDF

Topological defects appear in symmetry breaking phase transitions and are ubiquitous throughout Nature. As an ideal testbed for their study, defect configurations in nematic liquid crystals (NLCs) could be exploited in a rich variety of technological applications. Here we report on robust theoretical and experimental investigations in which an external electric field is used to switch between pre-determined stable chargeless disclination patterns in a nematic cell, where the cell is sufficiently thick that the disclinations start and terminate at the same surface.

View Article and Find Full Text PDF