Publications by authors named "Sarwar Azam"

Article Synopsis
  • Genotyping is the analysis of an organism's DNA to determine its genetic traits and has applications in fields like agriculture, biomedicine, and conservation.
  • Genetic markers are categorized into random markers (like RFLP and AFLP) and functional markers (like SCoT and SRAP), with the latter being less utilized in animal science despite their advantages.
  • This review provides an overview of the different genotyping markers available, their benefits and limitations, and emphasizes the need for more use of functional markers in genetic research.
View Article and Find Full Text PDF
Article Synopsis
  • * Researchers used whole-genome sequencing to analyze 25 fat-related QTLs across various indigenous breeds and found 20 genes with nonsynonymous substitutions.
  • * A distinct SNP pattern was identified in high-milk-yielding breeds, confirming significant genetic differences in fat QTLs compared to low-milk-yielding breeds through pyrosequencing.
View Article and Find Full Text PDF

Sphingobium fuliginis ATCC 27551, previously classified as Flavobacterium sp. ATCC 27551, degrades neurotoxic organophosphate insecticides and nerve agents through the activity of a membrane-associated organophosphate hydrolase. This study was designed to determine the complete genome sequence of S.

View Article and Find Full Text PDF

The complete genome sequence of Brevundimonas diminuta represented a chromosome (∼4.15 Mb) and two plasmids (pCMS1 and pCMS2) with sizes of 65,908 and 30,654 bp, respectively. The sequence of the genome showed no significant similarity with the known bacterial genome sequences, instead showed weak similarity with the members of different genera of family, Sphingomonadaceae.

View Article and Find Full Text PDF

Leptospirosis is zoonotic and emerging infectious disease of global importance. Little is understood about Leptospira pathogenesis and host immune response. In the present work we have investigated how Leptospira modulates the host innate immune response mediated by Toll-like receptors (TLRs) via surface exposed proteins.

View Article and Find Full Text PDF

Brucellosis is the most frequent zoonotic disease worldwide, with over 500,000 new human infections every year. Brucella melitensis, the most virulent species in humans, primarily affects goats and the zoonotic transmission occurs by ingestion of unpasteurized milk products or through direct contact with fetal tissues. Brucellosis is endemic in India but no information is available on population structure and genetic diversity of Brucella spp.

View Article and Find Full Text PDF

Background: Soil-borne fungi of the Fusarium oxysporum species complex cause devastating wilt disease on many crops including legumes that supply human dietary protein needs across many parts of the globe. We present and compare draft genome assemblies for three legume-infecting formae speciales (ff. spp.

View Article and Find Full Text PDF

Pigeonpea is a resilient crop, which is relatively more drought tolerant than many other legume crops. To understand the molecular mechanisms of this unique feature of pigeonpea, 51 genes were selected using the Hidden Markov Models (HMM) those codes for proteins having close similarity to universal stress protein domain. Validation of these genes was conducted on three pigeonpea genotypes (ICPL 151, ICPL 8755, and ICPL 227) having different levels of drought tolerance.

View Article and Find Full Text PDF

To enhance the marker density in the "QTL-hotspot" region, harboring several QTLs for drought tolerance-related traits identified on linkage group 04 (CaLG04) in chickpea recombinant inbred line (RIL) mapping population ICC 4958 × ICC 1882, a genotyping-by-sequencing approach was adopted. In total, 6.24 Gb data from ICC 4958, 5.

View Article and Find Full Text PDF

We report a likely candidate gene, CcTFL1, for determinacy in pigeonpea through candidate gene sequencing analysis, mapping, QTL analysis together with comparative genomics and expression profiling. Pigeonpea (Cajanus cajan) is the sixth most important legume crop grown on ~5 million hectares globally. Determinacy is an agronomically important trait selected during pigeonpea domestication.

View Article and Find Full Text PDF

Open source single nucleotide polymorphism (SNP) discovery pipelines for next generation sequencing data commonly requires working knowledge of command line interface, massive computational resources and expertise which is a daunting task for biologists. Further, the SNP information generated may not be readily used for downstream processes such as genotyping. Hence, a comprehensive pipeline has been developed by integrating several open source next generation sequencing (NGS) tools along with a graphical user interface called Integrated SNP Mining and Utilization (ISMU) for SNP discovery and their utilization by developing genotyping assays.

View Article and Find Full Text PDF

With the expansion of next-generation sequencing technology and advanced bioinformatics, there has been a rapid growth of genome sequencing projects. However, while this technology enables the rapid and cost-effective assembly of draft genomes, the quality of these assemblies usually falls short of gold standard genome assemblies produced using the more traditional BAC by BAC and Sanger sequencing approaches. Assembly validation is often performed by the physical anchoring of genetically mapped markers, but this is prone to errors and the resolution is usually low, especially towards centromeric regions where recombination is limited.

View Article and Find Full Text PDF

Physical map of chickpea was developed for the reference chickpea genotype (ICC 4958) using bacterial artificial chromosome (BAC) libraries targeting 71,094 clones (~12× coverage). High information content fingerprinting (HICF) of these clones gave high-quality fingerprinting data for 67,483 clones, and 1,174 contigs comprising 46,112 clones and 3,256 singletons were defined. In brief, 574 Mb genome size was assembled in 1,174 contigs with an average of 0.

View Article and Find Full Text PDF

A comprehensive transcriptome assembly of chickpea has been developed using 134.95 million Illumina single-end reads, 7.12 million single-end FLX/454 reads and 139,214 Sanger expressed sequence tags (ESTs) from >17 genotypes.

View Article and Find Full Text PDF

Legumes play an important role as food and forage crops in international agriculture especially in developing countries. Legumes have a unique biological process called nitrogen fixation (NF) by which they convert atmospheric nitrogen to ammonia. Although legume genomes have undergone polyploidization, duplication and divergence, NF-related genes, because of their essential functional role for legumes, might have remained conserved.

View Article and Find Full Text PDF

Chickpea (Cicer arietinum) is the second most widely grown legume crop after soybean, accounting for a substantial proportion of human dietary nitrogen intake and playing a crucial role in food security in developing countries. We report the ∼738-Mb draft whole genome shotgun sequence of CDC Frontier, a kabuli chickpea variety, which contains an estimated 28,269 genes. Resequencing and analysis of 90 cultivated and wild genotypes from ten countries identifies targets of both breeding-associated genetic sweeps and breeding-associated balancing selection.

View Article and Find Full Text PDF

The failure of peg penetration into the soil leads to seed abortion in peanut. Knowledge of genes involved in these processes is comparatively deficient. Here, we used RNA-seq to gain insights into transcriptomes of aerial and subterranean pods.

View Article and Find Full Text PDF

The present study reports the large-scale discovery of genome-wide single-nucleotide polymorphisms (SNPs) in chickpea, identified mainly through the next generation sequencing of two genotypes, i.e. Cicer arietinum ICC4958 and its wild progenitor C.

View Article and Find Full Text PDF

Premise Of The Study: Next-generation sequencing (NGS) technologies are frequently used for resequencing and mining of single nucleotide polymorphisms (SNPs) by comparison to a reference genome. In crop species such as chickpea (Cicer arietinum) that lack a reference genome sequence, NGS-based SNP discovery is a challenge. Therefore, unlike probability-based statistical approaches for consensus calling and by comparison with a reference sequence, a coverage-based consensus calling (CbCC) approach was applied and two genotypes were compared for SNP identification.

View Article and Find Full Text PDF

Pigeonpea is an important legume food crop grown primarily by smallholder farmers in many semi-arid tropical regions of the world. We used the Illumina next-generation sequencing platform to generate 237.2 Gb of sequence, which along with Sanger-based bacterial artificial chromosome end sequences and a genetic map, we assembled into scaffolds representing 72.

View Article and Find Full Text PDF