Publications by authors named "Sarvind M Tripathi"

Casein kinase 1δ (CK1δ) controls essential biological processes including circadian rhythms and wingless-related integration site (Wnt) signaling, but how its activity is regulated is not well understood. CK1δ is inhibited by autophosphorylation of its intrinsically disordered C-terminal tail. Two CK1 splice variants, δ1 and δ2, are known to have very different effects on circadian rhythms.

View Article and Find Full Text PDF

Casein kinase controls essential biological processes including circadian rhythms and Wnt signaling, but how its activity is regulated is not well understood. is inhibited by autophosphorylation of its intrinsically disordered C-terminal tail. Two CK1 splice variants, and , are known to have very different effects on circadian rhythms.

View Article and Find Full Text PDF

The basic helix-loop-helix PAS domain (bHLH-PAS) transcription factor CLOCK:BMAL1 (brain and muscle Arnt-like protein 1) sits at the core of the mammalian circadian transcription/translation feedback loop. Precise control of CLOCK:BMAL1 activity by coactivators and repressors establishes the ∼24-h periodicity of gene expression. Formation of a repressive complex, defined by the core clock proteins cryptochrome 1 (CRY1):CLOCK:BMAL1, plays an important role controlling the switch from repression to activation each day.

View Article and Find Full Text PDF

The MuvB complex recruits transcription factors to activate or repress genes with cell cycle-dependent expression patterns. MuvB contains the DNA-binding protein LIN54, which directs the complex to promoter cell cycle genes homology region (CHR) elements. Here we characterize the DNA-binding properties of LIN54 and describe the structural basis for recognition of a CHR sequence.

View Article and Find Full Text PDF

Lysine ɛ-aminotransferase (LAT) converts lysine to α-aminoadipate-δ-semialdehyde in a PLP-mediated reaction. We mutated active-site T330, N328 and E243, and structurally rationalized their properties. T330A and T330S mutants cannot bind PLP and are inactive.

View Article and Find Full Text PDF

Rv2780, an alanine dehydrogenase from Mycobacterium tuberculosis (MtAlaDH), catalyzes the NAD-dependent interconversion of alanine and pyruvate. Alanine dehydrogenase is released into the culture medium in substantial amounts by virulent strains of mycobacteria and is not found in the vaccine strain of tuberculosis. Crystals of recombinant MtAlaDH were grown from 2 M ammonium sulfate solution at approximately 12 mg ml(-1) protein concentration in two crystal forms which occur in the presence and absence of NAD/pyruvate, respectively.

View Article and Find Full Text PDF

Lysine epsilon-aminotransferase (LAT) is a protein involved in lysine catabolism; it belongs to the aminotransferase family of enzymes, which use pyridoxal 5'-phosphate (PLP) as a cofactor. LAT probably plays a significant role during the persistent/latent phase of Mycobacterium tuberculosis, as observed by its up-regulation by approximately 40-fold during this stage. Crystals of recombinant LAT have been grown in 0.

View Article and Find Full Text PDF