Publications by authors named "Sarvide S"

Tumor recognition by T cells is essential for antitumor immunity. A comprehensive characterization of T cell diversity may be key to understanding the success of immunomodulatory drugs and failure of PD-1 blockade in tumors such as multiple myeloma (MM). Here, we use single-cell RNA and T cell receptor sequencing to characterize bone marrow T cells from healthy adults (n = 4) and patients with precursor (n = 8) and full-blown MM (n = 10).

View Article and Find Full Text PDF

Myelodysplastic syndromes (MDS) are hematopoietic stem cell (HSC) malignancies characterized by ineffective hematopoiesis, with increased incidence in older individuals. Here we analyze the transcriptome of human HSCs purified from young and older healthy adults, as well as MDS patients, identifying transcriptional alterations following different patterns of expression. While aging-associated lesions seem to predispose HSCs to myeloid transformation, disease-specific alterations may trigger MDS development.

View Article and Find Full Text PDF

Clonal evolution in acute myeloid leukemia (AML) originates long before diagnosis and is a dynamic process that may affect survival. However, it remains uninvestigated during routine diagnostic workups. We hypothesized that the mutational status of bone marrow dysplastic cells and leukemic blasts, analyzed at the onset of AML using integrated multidimensional flow cytometry (MFC) immunophenotyping and fluorescence-activated cell sorting (FACS) with next-generation sequencing (NGS), could reconstruct leukemogenesis.

View Article and Find Full Text PDF

Normal cell counterparts of solid and myeloid tumors accumulate mutations years before disease onset; whether this occurs in B lymphocytes before lymphoma remains uncertain. We sequenced multiple stages of the B lineage in elderly individuals and patients with lymphoplasmacytic lymphoma, a singular disease for studying lymphomagenesis because of the high prevalence of mutated . We observed similar accumulation of random mutations in B lineages from both cohorts and unexpectedly found in normal precursor and mature B lymphocytes from patients with lymphoma.

View Article and Find Full Text PDF

Large-scale immune monitoring is becoming routinely used in clinical trials to identify determinants of treatment responsiveness, particularly to immunotherapies. Flow cytometry remains one of the most versatile and high throughput approaches for single-cell analysis; however, manual interpretation of multidimensional data poses a challenge when attempting to capture full cellular diversity and provide reproducible results. We present FlowCT, a semi-automated workspace empowered to analyze large data sets.

View Article and Find Full Text PDF

Although light-chain amyloidosis (AL) and multiple myeloma (MM) are characterized by tumor plasma cell (PC) expansion in bone marrow (BM), their clinical presentation differs. Previous attempts to identify unique pathogenic mechanisms behind such differences were unsuccessful, and no studies have investigated the differentiation stage of tumor PCs in patients with AL and MM. We sought to define a transcriptional atlas of normal PC development in secondary lymphoid organs (SLOs), peripheral blood (PB), and BM for comparison with the transcriptional programs (TPs) of tumor PCs in AL, MM, and monoclonal gammopathy of undetermined significance (MGUS).

View Article and Find Full Text PDF

Information on the immunopathobiology of coronavirus disease 2019 (COVID-19) is rapidly increasing; however, there remains a need to identify immune features predictive of fatal outcome. This large-scale study characterized immune responses to severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection using multidimensional flow cytometry, with the aim of identifying high-risk immune biomarkers. Holistic and unbiased analyses of 17 immune cell-types were conducted on 1,075 peripheral blood samples obtained from 868 COVID-19 patients and on samples from 24 patients presenting with non-SARS-CoV-2 infections and 36 healthy donors.

View Article and Find Full Text PDF

Patients with multiple myeloma (MM) carrying standard- or high-risk cytogenetic abnormalities (CAs) achieve similar complete response (CR) rates, but the later have inferior progression-free survival (PFS). This questions the legitimacy of CR as a treatment endpoint and represents a biological conundrum regarding the nature of tumor reservoirs that persist after therapy in high-risk MM. We used next-generation flow (NGF) cytometry to evaluate measurable residual disease (MRD) in MM patients with standard- vs high-risk CAs (n = 300 and 90, respectively) enrolled in the PETHEMA/GEM2012MENOS65 trial, and to identify mechanisms that determine MRD resistance in both patient subgroups (n = 40).

View Article and Find Full Text PDF

Multiple myeloma (MM) is tightly dependent on inflammatory bone marrow microenvironment. IL-17 producing CD4+ T cells (Th17) sustain MM cells growth and osteoclasts-dependent bone damage. In turn, Th17 differentiation relies on inflammatory stimuli.

View Article and Find Full Text PDF
Article Synopsis
  • G-MDSCs are special cells that help tumors like multiple myeloma grow and make it harder for the body’s immune system to fight them.
  • Researchers wanted to understand how to identify these cells better so they could be used more effectively in treating cancer.
  • They found out that a specific type of neutrophil (a kind of white blood cell) in patients with multiple myeloma affects how well treatments work, and they discovered new markers that can help monitor G-MDSCs more accurately.
View Article and Find Full Text PDF

Risk of developing myelodysplastic syndrome (MDS) is significantly increased in both multiple myeloma (MM) and monoclonal gammopathy of undetermined significance, suggesting that it is therapy independent. However, the incidence and sequelae of dysplastic hematopoiesis at diagnosis are unknown. Here, we used multidimensional flow cytometry (MFC) to prospectively screen for the presence of MDS-associated phenotypic alterations (MDS-PA) in the bone marrow of 285 patients with MM enrolled in the PETHEMA/GEM2012MENOS65 trial (#NCT01916252).

View Article and Find Full Text PDF

Unlabelled: Primary biliary cirrhosis (PBC) is a chronic cholestatic disease of unknown etiopathogenesis showing progressive autoimmune-mediated cholangitis. In PBC patients, the liver and lymphocytes exhibit diminished expression of AE2/SLC4A2, a Cl-/HCO3- anion exchanger involved in biliary bicarbonate secretion and intracellular pH regulation. Decreased AE2 expression may be pathogenic as Ae2a,b(-/-) mice reproduce hepatobiliary and immunological features resembling PBC.

View Article and Find Full Text PDF
Article Synopsis
  • * Chronic treatment with UDCA in a rat model significantly reduces liver cyst formation and fibrosis while improving motor behavior and normalizing bile acid levels.
  • * The research indicates that UDCA can inhibit the overgrowth of cystic liver cells and reduce toxic bile acids, suggesting its potential as a treatment option for PLD patients.
View Article and Find Full Text PDF

Mitogenic stimulation of lymphocytes involves alkalinization of intracellular pH (pHi ). Subsequent pHi regulation may involve HCO3 (-) extrusion through Cl(-) /HCO3 (-) exchangers and/or Na(+) -HCO3 (-) co-transporters with acid-loading capability. Abnormalities in these mechanisms could result in immune dysfunctions, as suggested by the CD8(+) T-cell expansion encountered in mice lacking Ae2 (a widely expressed acid loader with electroneutral and Na(+) -independent Cl(-) /HCO3 (-) anion-exchange activity).

View Article and Find Full Text PDF

Enamel fluorosis is an irreversible structural enamel defect following exposure to supraoptimal levels of fluoride during amelogenesis. We hypothesized that fluorosis is associated with excess release of protons during formation of hypermineralized lines in the mineralizing enamel matrix. We tested this concept by analyzing fluorotic enamel defects in wild-type mice and mice deficient in anion exchanger-2a,b (Ae2a,b), a transmembrane protein in maturation ameloblasts that exchanges extracellular Cl(-) for bicarbonate.

View Article and Find Full Text PDF

Unlabelled: Cl(-) /HCO3- anion exchanger 2 (AE2) participates in intracellular pH homeostasis and secretin-stimulated biliary bicarbonate secretion. AE2/SLC4A2 gene expression is reduced in liver and blood mononuclear cells from patients with primary biliary cirrhosis (PBC). Our previous findings of hepatic and immunological features mimicking PBC in Ae2-deficient mice strongly suggest that decreased AE2 expression might be involved in the pathogenesis of PBC.

View Article and Find Full Text PDF
Article Synopsis
  • AE2 is a protein that helps control pH levels in the body and is important for how the liver works.
  • In mice without this protein, researchers found changes in immune cells and liver health, including inflammation.
  • The study suggests that lack of AE2 can affect how the immune system works and may cause stress in liver cells.
View Article and Find Full Text PDF