Publications by authors named "Sarvapali Ramchurn"

Background: Clinician-led quality control into oncological decision-making is crucial for optimising patient care. Explainable artificial intelligence (XAI) techniques provide data-driven approaches to unravel how clinical variables influence this decision-making. We applied global XAI techniques to examine the impact of key clinical decision-drivers when mapped by a machine learning (ML) model, on the likelihood of receiving different oesophageal cancer (OC) treatment modalities by the multidisciplinary team (MDT).

View Article and Find Full Text PDF

Background: Rising workflow pressures within the oesophageal cancer (OC) multidisciplinary team (MDT) can lead to variability in decision-making, and health inequality. Machine learning (ML) offers a potential automated data-driven approach to address inconsistency and standardize care. The aim of this experimental pilot study was to develop ML models able to predict curative OC MDT treatment decisions and determine the relative importance of underlying decision-critical variables.

View Article and Find Full Text PDF

In this paper, we foreground some of the key research challenges that arise in the design of trustworthy human-AI partnerships. In particular, we focus on the challenges in designing human-AI partnerships that need to be addressed to help humans and organizations trust their machine counterparts individually or as a collective (e.g.

View Article and Find Full Text PDF

We investigate a decentralized patrolling problem for dynamic environments where information is distributed alongside threats. In this problem, agents obtain information at a location, but may suffer attacks from the threat at that location. In a decentralized fashion, each agent patrols in a designated area of the environment and interacts with a limited number of agents.

View Article and Find Full Text PDF

We investigate a multi-agent patrolling problem where information is distributed alongside threats in environments with uncertainties. Specifically, the information and threat at each location are independently modelled as multi-state Markov chains, whose states are not observed until the location is visited by an agent. While agents will obtain information at a location, they may also suffer damage from the threat at that location.

View Article and Find Full Text PDF