Publications by authors named "Sarvajna Dwivedi"

Technologies for long-term delivery of aerosol medications in asthma and chronic obstructive pulmonary disease have improved over the past 2 decades with advancements in our understanding of the physical chemistry of aerosol formulations, device engineering, aerosol physics, and pulmonary biology. However, substantial challenges remain when a patient is required to use multiple inhaler types, multiple medications, and/or combinations of medications. Combining multiple drugs into a single inhaler while retaining appropriate dosing of the individual agents in the combination may enhance patient adherence to therapy and reduce device errors that occur when patients are using multiple inhalers.

View Article and Find Full Text PDF

This gamma scintigraphy imaging study was the first to assess pulmonary and extrathoracic deposition and regional lung deposition patterns of a radiolabelled long-acting muscarinic antagonist/long-acting β-agonist fixed-dose combination glycopyrronium/formoterol fumarate dihydrate (GFF) 14.4/10μg (equivalent to glycopyrrolate/formoterol fumarate 18/9.6μg), delivered by pressurized metered dose inhaler (pMDI) using novel co-suspension delivery technology.

View Article and Find Full Text PDF

Co-Suspension™ Delivery Technology offers a novel pharmaceutical platform for inhaled drug therapy. This randomized, double-blind, placebo-controlled, single-dose study (NCT01349868) evaluated the efficacy of a range of doses for formoterol fumarate (FF) delivered using Co-Suspension delivery technology via a pressurized metered dose inhaler (MDI) versus placebo in patients with moderate-to-severe chronic obstructive pulmonary disease (COPD). Secondary objectives included determination of non-inferior efficacy and systemic exposure compared with open-label Foradil 12 μg (Foradil Aerolizer; formoterol fumarate dry powder inhaler).

View Article and Find Full Text PDF

Background: Long-acting muscarinic antagonist/long-acting β-agonist combinations are recommended for patients whose chronic obstructive pulmonary disease (COPD) is not managed with monotherapy. We assessed the efficacy and safety of glycopyrrolate (GP)/formoterol fumarate (FF) fixed-dose combination delivered via a Co-Suspension™ Delivery Technology-based metered dose inhaler (MDI) (GFF MDI).

Methods: This was a Phase IIb randomized, multicenter, placebo-controlled, double-blind, chronic-dosing (7 days), crossover study in patients with moderate-to-very severe COPD ( NCT01085045 ).

View Article and Find Full Text PDF

Background: This study forms part of the first complete characterization of the dose-response curve for glycopyrrolate (GP) delivered using Co-Suspension™ Delivery Technology via a metered dose inhaler (MDI). We examined the lower GP MDI dose range to determine an optimal dose for patients with moderate-to-severe chronic obstructive pulmonary disease (COPD).

Methods: This randomized, double-blind, chronic-dosing, balanced incomplete-block, placebo-controlled, crossover study compared six doses of GP MDI (18, 9, 4.

View Article and Find Full Text PDF

Engineered porous phospholipid microparticles with aerodynamic diameters in the respirable range of 1-2 μm were cosuspended in 1,1,1,2-tetrafluoroethane, a propellant, with microcrystals of glycopyrrolate, formoterol fumarate dihydrate, or Mometasone furoate-three drugs with different solubilities in the propellant, and different physical, chemical, and pharmacological attributes. The drug microcrystals were added individually, in pairs, or all three together to prepare different cosuspensions, contained in a pressurized metered dose inhaler (pMDI). The drug microcrystals irreversibly associated with the porous particles, and the resultant cosuspensions possessed greatly improved suspension stability compared with suspensions of drug microcrystals alone.

View Article and Find Full Text PDF

Pressurized metered dose inhaler is the most common inhaled dosage form, ideally suited for delivering the highly potent compounds that medicinal chemists typically discover for respiratory therapeutic targets. The clinical benefit of combination therapy for asthma and chronic obstructive pulmonary disease has been well established, and many of the new discovery candidates are likely to be studied in the clinic as combination drugs even at early stages of development. We present a novel pressurized metered dose inhaler formulation approach to enable consistent aerosol performance of a respiratory therapeutic whether it is emitted from a single-, double- or triple-therapy product.

View Article and Find Full Text PDF

Purpose: To evaluate an anomalous increase in the specific surface area of budesonide during storage postmicronization.

Methods: Budesonide was micronized using a conventional air-jet mill. Surface areas and total pore volumes were measured using nitrogen sorption.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session9fi08k15eke90o89rdt97a45549qo6c2): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once