Vigna unguiculata L. Walp. is an African crop spread worldwide mainly for pulses production.
View Article and Find Full Text PDFX-linked chronic granulomatous disease is a rare disease caused by mutations in the CYBB gene. While more extensive knowledge is available on genetics, pathogenesis, and possible therapeutic options, mitochondrial activity and its implications on patient monitoring are still not well-characterized. We have developed a novel protocol to study mitochondrial activity on whole blood of XCGD patients before and after transplantation, as well as on XCGD carriers.
View Article and Find Full Text PDFARPC1B is a key factor for the assembly and maintenance of the ARP2/3 complex that is involved in actin branching from an existing filament. Germline biallelic mutations in have been recently described in 6 patients with clinical features of combined immunodeficiency (CID), whose neutrophils and platelets but not T lymphocytes were studied. We hypothesized that ARPC1B deficiency may also lead to cytoskeleton and functional defects in T cells.
View Article and Find Full Text PDFT-cell therapy after hematopoietic stem cell transplantation (HSCT) has been used alone or in combination with immunosuppression to cure hematologic malignancies and to prevent disease recurrence. Here, we describe the outcome of patients with high-risk/advanced stage hematologic malignancies, who received T-cell depleted (TCD) haploidentical-HSCT (haplo-HSCT) combined with donor T lymphocytes pretreated with IL-10 (ALT-TEN trial). IL-10-anergized donor T cells (IL-10-DLI) contained T regulatory type 1 (Tr1) cells specific for the host alloantigens, limiting donor-vs.
View Article and Find Full Text PDFIn humans, mutations in the gene encoding for forkhead box P3 (FOXP3), a critically important transcription factor for CD4⁺CD25⁺ regulatory T (T(reg)) cell function, lead to a life-threatening systemic poly-autoimmune disease, known as immune dysregulation, polyendocrinopathy, enteropathy, X-linked (IPEX) syndrome. Severe autoimmunity results from the inborn dysfunction and instability of FOXP3-mutated T(reg) cells. Hematopoietic stem cell transplantation is the only current curative option for affected patients.
View Article and Find Full Text PDFImmune dysregulation, Polyendocrinopathy, Enteropathy X-linked (IPEX) syndrome is a unique example of primary immunodeficiency characterized by autoimmune manifestations due to defective regulatory T (Treg) cells, in the presence of FOXP3 mutations. However, autoimmune symptoms phenotypically resembling IPEX often occur in the absence of detectable FOXP3 mutations. The cause of this "IPEX-like" syndrome presently remains unclear.
View Article and Find Full Text PDFBackground: CD4(+) regulatory T cells are a specialized subset of T cells that actively control immune responses. Several experimental protocols have been used to expand natural regulatory T cells and to generate adaptive type 1 regulatory T cells for regulatory T-cell-based therapies.
Design And Methods: The ability of exogenous recombinant human interleukin-10 to induce alloantigen-specific anergy in T cells was investigated and compared to that of interleukin-10 derived from tolerogenic dendritic cells, in mixed lymphocyte cultures.
Celiac disease (CD) results from a permanent intolerance to dietary gluten and is due to a massive T cell-mediated immune response to gliadin, the main component of gluten. In this disease, the regulation of immune responses to dietary gliadin is altered. Herein, we investigated whether IL-10 could modulate anti-gliadin immune responses and whether gliadin-specific type 1 regulatory T (Tr1) cells could be isolated from the intestinal mucosa of CD patients in remission.
View Article and Find Full Text PDFThe autoimmune disease immune dysregulation, polyendocrinopathy, enteropathy, X-linked (IPEX) is caused by mutations in the forkhead box protein P3 (FOXP3) gene. In the mouse model of FOXP3 deficiency, the lack of CD4+ CD25+ Tregs is responsible for lethal autoimmunity, indicating that FOXP3 is required for the differentiation of this Treg subset. We show that the number and phenotype of CD4+ CD25+ T cells from IPEX patients are comparable to those of normal donors.
View Article and Find Full Text PDFT regulatory (Tr) cells are essential for the induction of peripheral tolerance. Several types of Tr cells exist, including CD4(+) T cells which express CD25 constitutively and suppress immune responses via direct cell-to-cell interactions, and type 1 T regulatory (Tr1) cells, which function via secretion of interleukin (IL)-10 and transforming growth factor (TGF)-beta. The relationship between CD25(+)CD4(+) T cells and Tr1 cells remains unclear.
View Article and Find Full Text PDFCloned T regulatory type 1 (Tr1) cells produce IL-10, TGF-beta, IFN-gamma, and very low or non-detectable levels of IL-2 and IL-4, following TCR-mediated activation. In addition, upon TCR stimulation, Tr1 cell clones up-regulate activation markers but show low proliferative responses, partially due to the suppressive effect of autocrine IL-10 and TGF-beta. Here we show that Tr1 cells have growth requirements different from those of Th1 and Th2 cells.
View Article and Find Full Text PDFIn an attempt to transduce monocyte-derived dendritic cells (DCs) by a retroviral vector coding for a cell surface marker, we were confronted by the observation of high transfer of the surface molecule in the absence of vector proviral DNA in the treated cells. Indeed, DCs acquired the surface marker by a mechanism independent of the vector machinery, requiring cell-to-cell contact and involving transfer of lipids and a variety of intact membrane proteins. Most important, this property of DCs also includes acquisition of foreign human leukocyte antigen (HLA) molecules.
View Article and Find Full Text PDF