Bone shape changes are considered a relevant biomarker in understanding the onset and progression of knee osteoarthritis (OA). This study used a novel deep learning pipeline to predict longitudinal bone shape changes in the femur four years in advance, using bone surfaces that were extracted in knee MRIs from the OA initiative study, via a segmentation procedure and encoded as shape maps using spherical coordinates. Given a sequence of three consecutive shape maps (collected in a time window of 24 months), a fully convolutional network was trained to predict the whole bone surface 48 months after the last observed time point, and a classifier to diagnose OA in the predicted maps.
View Article and Find Full Text PDFMany studies have validated cartilage thickness as a biomarker for knee osteoarthritis (OA); however, few studies investigate beyond cross-sectional observations or comparisons across two timepoints. By characterizing the trajectory of cartilage thickness changes over 8 years in healthy individuals from the OA initiative data set, this study discovers associations between the dynamics of cartilage changes and OA incidence. A fully automated cartilage segmentation and thickness measurement method were developed and validated against manual measurements: mean absolute error = 0.
View Article and Find Full Text PDF