Virtually all bacterial species synthesize high levels of (p)ppGpp (guanosine penta- or tetraphosphate), a pleiotropic regulator of the stringent response and other stresses in bacteria. relA and spoT genes are, respectively, involved in synthesis and synthesis/biodegradation of (p)ppGpp. We aimed in this work to evaluate the impact of static magnetic field (SMF) 200 mT exposure on the expression of relA and spoT genes in Salmonella enterica Hadar.
View Article and Find Full Text PDFThe present study investigated the adaptation of Salmonella enterica subsp. enterica serovar Hadar to static magnetic field (SMF) exposure (200 mT, 9 h). The proteomic analysis provides an overview of potentially important cytosolic proteins that Salmonella needs to regulate to survive and adapt to magnetic stress.
View Article and Find Full Text PDFBackground: Salmonella enterica serovar Hadar (S. Hadar) is a highly prevalent foodborne pathogen and therefore a major cause of human gastroenteritis worldwide. Outer membrane proteins whose production is often regulated by environmental conditions also play important roles in the adaptability of bacterial pathogens to various environments.
View Article and Find Full Text PDFIn the present study, we investigated the effect of exposure to A static magnetic field (SMF) on cell growth, viability, and gene expression of Salmonella enterica subsp. enterica serovar Hadar. Our results indicated that SMF exposure (200 mT, 13 hours) failed to alter cellular growth but induced a decrease of colony-forming units (CFU) between 3 and 6 hours followed by an increase from 6 to 9 hours.
View Article and Find Full Text PDF