Publications by authors named "Sarpita Bose"

Hepatic miRNA, miR-122, plays an important role in controlling metabolic homeostasis in mammalian liver. Intercellular transfer of miR-122 was found to play a role in controlling tissue inflammation. miR-122, as part of extracellular vesicles released by lipid-exposed hepatic cells, are taken up by tissue macrophages to activate them and produce inflammatory cytokines.

View Article and Find Full Text PDF

Metabolic reprogramming is one of the emerging hallmarks of cancer cells. Various factors, such as signaling proteins (S), miRNA, and transcription factors (TFs), may play important roles in altering the metabolic status in cancer cells by interacting with metabolic enzymes either directly or via protein-protein interactions (PPIs). Therefore, it is important to understand the coordination among these cellular pathways, which may provide better insight into the molecular mechanism behind metabolic adaptations in cancer cells.

View Article and Find Full Text PDF

The novel coronavirus 2 (nCoV2) outbreaks took place in December 2019 in Wuhan City, Hubei Province, China. It continued to spread worldwide in an unprecedented manner, bringing the whole world to a lockdown and causing severe loss of life and economic stability. The coronavirus disease 2019 (COVID-19) pandemic has also affected India, infecting more than 10 million till 31st December 2020 and resulting in more than a hundred thousand deaths.

View Article and Find Full Text PDF

Analysis of Pan-omics Data in Human Interactome Network (APODHIN) is a platform for integrative analysis of transcriptomics, proteomics, genomics, and metabolomics data for identification of key molecular players and their interconnections exemplified in cancer scenario. APODHIN works on a meta-interactome network consisting of human protein-protein interactions (PPIs), miRNA-target gene regulatory interactions, and transcription factor-target gene regulatory relationships. In its first module, APODHIN maps proteins/genes/miRNAs from different omics data in its meta-interactome network and extracts the network of biomolecules that are differentially altered in the given scenario.

View Article and Find Full Text PDF

Malaria, one of the most severe global diseases, infects nearly 300 million people causing death of about a million population annually. Herein we have reported design, synthesis and biological evaluation of potent antimalarial compounds that target melatonin hormone as a potential pathway for the inhibition of the parasite proliferation. The molecular design is based on melatonin and indole based synthetic and natural antimalarial agents.

View Article and Find Full Text PDF