The COVID-19 pandemic has highlighted the need for innovative biosensing, diagnostic, and surveillance platforms. Here we report that glycosylated, polymer-stabilized, gold nanorods can bind the SARS-CoV-2 spike protein and show correlation to the presence of SARS-CoV-2 in primary COVID-19 clinical samples. Telechelic polymers were prepared by reversible addition-fragmentation chain-transfer polymerization, enabling the capture of 2,3-sialyllactose and immobilization onto gold nanorods.
View Article and Find Full Text PDFThe COVID-19 pandemic, and future pandemics, require diagnostic tools to track disease spread and guide the isolation of (a)symptomatic individuals. Lateral-flow diagnostics (LFDs) are rapid and of lower cost than molecular (genetic) tests, with current LFDs using antibodies as their recognition units. Herein, we develop a prototype flow-through device (related, but distinct to LFDs), utilizing acetyl neuraminic acid-functionalized, polymer-coated, gold nanoparticles as the detection/capture unit for SARS-COV-2, by targeting the sialic acid-binding site of the spike protein.
View Article and Find Full Text PDFAim: To explore the metabolic phenotype of obesity-related secondary hypogonadism (SH) in men pre-replacement and post-replacement therapy with long-acting intramuscular (IM) testosterone undecanoate (TU).
Methods: A prospective observational pilot study on metabolic effects of TU IM in male obesity-related SH (hypogonadal [HG] group, n = 13), including baseline comparisons with controls (eugonadal [EG] group, n = 15). Half the subjects (n = 7 in each group) had type 2 diabetes mellitus (T2D).
Background: A key objective of the UK National Institute for Health and Care Excellence (NICE) pathway for diagnosis of familial hypercholesterolemia (FH) is the identification of affected relatives of index cases through cascade screening. At present, there is no systematic appraisal of available methodological options to identify the appropriate diagnostic testing protocol that would allow cost-effective cascade genetic screening. The majority of FH-causing mutations identified in the LDL receptor (LDLR) or apolipoprotein B (APOB) genes are single-nucleotide changes.
View Article and Find Full Text PDFBackground Detection of disease-associated mutations in patients with familial hypercholesterolaemia is crucial for early interventions to reduce risk of cardiovascular disease. Screening for these mutations represents a methodological challenge since more than 1200 different causal mutations in the low-density lipoprotein receptor has been identified. A number of methodological approaches have been developed for screening by clinical diagnostic laboratories.
View Article and Find Full Text PDF