Silicon photonics is a rapidly developing technology that promises to revolutionize the way we communicate, compute and sense the world. However, the lack of highly scalable, native complementary metal-oxide-semiconductor (CMOS)-integrated light sources is one of the main factors hampering its widespread adoption. Despite considerable progress in hybrid and heterogeneous integration of III-V light sources on silicon, monolithic integration by direct epitaxy of III-V materials remains the pinnacle of cost-effective on-chip light sources.
View Article and Find Full Text PDFNonclassical light emission, such as entangled and single-photon emission, has attracted significant interest because of its importance in future quantum technology applications. In this work, we study the potential of wurtzite (In,Ga)N/GaN quantum dots for novel nonclassical light emission, namely, twin-photon emission. Our calculations, based on a fully atomistic many-body framework, reveal that the combination of carrier localization due to random alloy fluctuations in the dot, spin-orbit coupling effects, underlying wurtzite crystal structure, and built-in electric fields leads to an excitonic fine structure that is very different from that of more "conventional" zinc-blende (In,Ga)As dots, which have been used so far for twin photon emission.
View Article and Find Full Text PDFIn this paper, we have made a clear differentiation among bandgap, diffraction, interference, and refraction effects in photonic crystal structures (PhCs). For observing bandgap, diffraction, and refraction effects, PhCs are considered on the top p-GaN surface of light emitting diodes (LEDs), whereas for interference effect, hole type PhCs are considered to be embedded within n-GaN layer of LED. From analysis, it is observed that at a particular lattice periodicity, for which bandgap lies within the wavelength of interest shows a significant light extraction due to inhibition of guided mode.
View Article and Find Full Text PDF