The non-linear complex relationships among the process variables in wastewater and waste gas treatment systems possess a significant challenge for real-time systems modelling. Data driven artificial intelligence (AI) tools are increasingly being adopted to predict the process performance, cost-effective process monitoring, and the control of different waste treatment systems, including those involving resource recovery. This review presents an in-depth analysis of the applications of emerging AI tools in physico-chemical and biological processes for the treatment of air pollutants, water and wastewater, and resource recovery processes.
View Article and Find Full Text PDFA continuous stirred tank bioreactor (CSTB) with cell recycling combined with ceramic membrane technology and inoculated with Rhodococcus opacus PD630 was employed to treat petroleum refinery wastewater for simultaneous chemical oxygen demand (COD) removal and lipid production from the retentate obtained during wastewater treatment. In the present study, the COD removal efficiency (COD) (%) and lipid concentration (g/L) were predicted using two artificial intelligence models, i.e.
View Article and Find Full Text PDFThe Internet of Medical Things (IoMT) is a bionetwork of allied medical devices, sensors, wearable biosensor devices, etc. It is gradually reforming the healthcare industry by leveraging its capabilities to improve personalized healthcare services by enabling seamless communication of medical data. IoMT facilitates prompt emergency responses and provides improved quality of medical services with minimum cost.
View Article and Find Full Text PDFA new model for neuro-fuzzy (NF) classification systems is proposed. The motivation is to utilize the feature-wise degree of belonging of patterns to all classes that are obtained through a fuzzification process. A fuzzification process generates a membership matrix having total number of elements equal to the product of the number of features and classes present in the data set.
View Article and Find Full Text PDF