Publications by authors named "Sarmistha Ray-Saha"

We developed a strategy for identifying positions in G protein-coupled receptors that are amenable to bioorthogonal modification with a peptide epitope tag under cell culturing conditions. We introduced the unnatural amino acid p-azido-l-phenylalanine (azF) into human CC chemokine receptor 5 (CCR5) at site-specific amber codon mutations. We then used strain-promoted azide-alkyne [3+2] cycloaddition to label the azF-CCR5 variants with a FLAG peptide epitope-conjugated aza-dibenzocyclooctyne (DBCO) reagent.

View Article and Find Full Text PDF

We developed a strategy for creating epitope maps of monoclonal antibodies (mAbs) that bind to G protein-coupled receptors (GPCRs) containing photo-cross-linkers. Using human CXC chemokine receptor 4 (CXCR4) as a model system, we genetically incorporated the photolabile unnatural amino acid p-azido-l-phenylalanine (azF) at various positions within extracellular loop 2 (EC2). We then mapped the interactions of the azF-CXCR4 variants with mAb 12G5 using targeted loss-of-function studies and photo-cross-linking in whole cells in a microplate-based format.

View Article and Find Full Text PDF

G protein-coupled receptor hetero-oligomerization is emerging as an important regulator of ligand-dependent transmembrane signaling, but precisely how receptor heteromers affect receptor pharmacology remains largely unknown. In this study, we have attempted to identify the functional significance of the heteromeric complex between CXCR4 and CXCR7 chemokine receptors. We demonstrate that co-expression of CXCR7 with CXCR4 results in constitutive recruitment of β-arrestin to the CXCR4·CXCR7 complex and simultaneous impairment of G(i)-mediated signaling.

View Article and Find Full Text PDF

Recently we reported that the linear tetracysteine sequence preferred by FlAsH and ReAsH could be split between two members of a protein partnership or two approximated regions of a folded protein while maintaining high affinity and brightness. Here we show that this tool–bipartite tetracysteine display–facilitates the design of E2, an encodable, site-selective, Src-family kinase sensor.

View Article and Find Full Text PDF