Arsenic, though a poor mutagen, is an accepted environmental carcinogen. Perturbation of DNA methylation pattern leading to aberrant gene expression has been hypothesized as the mechanism for arsenic induced carcinogenesis. We had earlier demonstrated the hypermethylation of promoter region of p53 and p16 genes in persons exposed to different doses of arsenic.
View Article and Find Full Text PDFGene-specific hypermethylation has previously been detected in Arsenic exposed persons. To monitor the level of whole genome methylation in persons exposed to different levels of Arsenic via drinking water, DNA was extracted from peripheral blood mononuclear cells of 64 persons. Uptake of methyl group from (3)H labeled S-Adenosyl Methionine after incubation of DNA with SssI methylase was measured.
View Article and Find Full Text PDFChronic arsenic exposure is known to produce arsenicosis and cancer. To ascertain whether perturbation of methylation plays a role in such carcinogenesis, the degree of methylation of p53 and p16 gene in DNA obtained from blood samples of people chronically exposed to arsenic and skin cancer subjects was studied. Methylation-specific restriction endonuclease digestion followed by polymerase chain reaction (PCR) of gene p53 and bisulfite treatment followed by methylation-sensitive PCR of gene p16 have been carried out to analyze the methylation status of the samples studied.
View Article and Find Full Text PDF