Nutritional approaches have emerged over the past number of years as suitable interventions to ameliorate the enduring effects of early life stress. Maternal separation (MS) is a rodent model of early life stress which induces widespread changes across the microbiota-gut-brain axis. Milk fat globule membrane (MFGM) is a neuroactive membrane structure that surrounds milk fat globules in breast milk and has been shown to have positive health effects in infants, yet mechanisms behind this are not fully known.
View Article and Find Full Text PDFRecent and ongoing developments in microbiome science are enabling new frontiers of research for probiotics and prebiotics. Novel types, mechanisms, and applications currently under study have the potential to change scientific understanding as well as nutritional and healthcare applications of these interventions. The expansion of related fields of microbiome-targeted interventions, and an evolving landscape for implementation across regulatory, policy, prescriber, and consumer spheres, portends an era of significant change.
View Article and Find Full Text PDFVisceral hypersensitivity is a hallmark of many functional and stress-related gastrointestinal disorders, and there is growing evidence that the gut microbiota may play a role in its pathophysiology. It has previously been shown that early life stress-induced visceral sensitivity is reduced by various probiotic strains of bacteria (including Lactobacillus rhamnosus GG (LGG)) alone or in combination with prebiotic fibres in rat models. However, the exact mechanisms underpinning such effects remain unresolved.
View Article and Find Full Text PDFNutritional interventions targeting the microbiota-gut-brain axis are proposed to modulate stress-induced dysfunction of physiological processes and brain development. Maternal separation (MS) in rats induces long-term alterations to behaviour, pain responses, gut microbiome and brain neurochemistry. In this study, the effects of dietary interventions (milk fat globule membrane [MFGM] and a polydextrose/galacto-oligosaccharide prebiotic blend) were evaluated.
View Article and Find Full Text PDFProbiotics and probiotic-related nutritional interventions have been described to have beneficial effects on immune homeostasis and gut health. In previous studies, GG (LGG) soluble mediators (LSM) have been demonstrated to exert beneficial effects in preclinical models of allergic sensitization, bacterial infection, and intestinal barrier function. In the context of allergic diseases, differentiation of dendritic cells (DCs) and their interactions with T cell populations are crucial for driving tolerogenic responses.
View Article and Find Full Text PDFBackground: Necrotizing enterocolitis (NEC) is associated with changes in the luminal gut microbiota. It is not known whether the mucosa-associated microbiota is affected by NEC and stimulates inflammatory lesions.
Objective: We hypothesized that the density of the mucosa-associated microbiota correlates with NEC severity in preterm pigs and that in vitro infection with increasing densities of Clostridium perfringens, which has been associated with NEC in preterm infants, would lead to a transcriptional response related to the inflammatory conditions of NEC.